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I. Introduction 

 
The Nash equilibrium is a central concept in the theory of normal form games, 

which captures a situation in which players choose their strategies independently. 
Aumann (1974) extended the Nash equilibrium to the notion of the correlated 
equilibrium, in which players base their strategy choices on their observations of 
correlating signals.1 There have been a number of refinements made to the Nash 
equilibrium, e.g., the evolutionary stable strategy (ESS), perfect equilibrium, and 
proper equilibrium. The main purpose of this paper is to examine an analogue of 
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1 As pointed out in Hart and Mas-Colell (2000), p.1128, lines 3-4, “it is hard to exclude a priori the 
possibility that correlating signals are amply available to the players...” 
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the ESS for the correlated equilibrium, which we denote as the evolutionarily stable 
correlation (ESC). We also examine analogues of perfection and properness for 
correlated equilibria and investigate their relationships with the ESC. 

The concept of the ESS is based on the evolutionary selection process, which is 
based on the idea that individuals who poorly adapt to a given environment will 
eventually disappear by natural selection. Speaking more rigorously, the ESS is a 
conventional (i.e., monomorphic) strategy adopted in a population that cannot be 
invaded by a small group of mutants. We adapt this evolutionary idea to correlated 
equilibria. We consider a large population model with a uniform random matching 
process and we assume that a given (conventional) random device recommends 
actions to matched players. When players adopt the “obedient” strategy, the device 
generates a probability distribution of the joint actions played―the conventional 
correlation. We investigate the stability of this correlation in relation to the 
mutations of players’ strategies when assigning actions actually played that are 
conditional on the recommended actions. Suppose a group of mutants appears in 
the population, and all of them use the same action assignment strategy, which 
differs from the obedient strategy. Although the (conventional) random device 
remains the same, the resulting correlation of the joint actions played differs from 
the conventional correlation. We state that the conventional correlation is an ESC 
when an incumbent using the obedient strategy performs better than a mutant 
using the nonobedient strategy. 

This description of the ESC is based on the direct mechanism, in which a 
random device directly recommends actions. Our formal definition of the ESC also 
covers the case of an indirect mechanism, in which signals of the device need not be 
actions. We prove that the formulation of an ESC using the direct mechanism is 
equivalent to that using an indirect mechanism (Proposition 2). 

The ESS refines the Nash equilibrium and deals with evolutionary stability 
under the restriction of independent plays. Similarly, the ESC refines the correlated 
equilibrium and deals with evolutionary stability without the restriction of 
independent plays.2 We show that an ESC is a correlated equilibrium, but not vice 
versa. We characterize the ESC with best-reply conditions (Proposition 1) and 
prove that the ESC is a generalization of the ESS (Proposition 5) in the same 
manner as the correlated equilibrium is a generalization of the Nash equilibrium. 
We also characterize the ESC in relation to local superiority (Proposition 7). 

We introduce the notion of a perfect and proper correlated equilibrium and show 
that an ESC is a proper correlated equilibrium and that a proper correlated 
equilibrium is a perfect correlated equilibrium (Propositions 9, 11 and 12). 

____________________ 
2 What we mean by a refinement is that the ESS is contained in the set of Nash equilibria and the 

ESC is contained in the set of correlated equilibria. A formal refinement often requires the existence of 
such refinement, but neither the ESS nor the ESC satisfies this requirement. 
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However, none of the converse statements are true. 
 
 

II. Evolutionarily Stable Correlation 
 

2.1. Correlated Equilibrium and Mechanism 
 
Consider a two-player symmetric finite normal form game 1 2 1 2{ , ; , }G S S u u= , 

where 1 2S S S= = , and S  is a nonempty finite set, with the payoff function 
:u S S´ ®¡  such that 1 1 2 1 2 2 2 1( , ) ( , ) ( , )u s s u s s u s s= =  for all 1 2( , )s s S SÎ ´ . A 

(pure) action is an element s SÎ , and a mixed action (or mixed strategy) is an z Î
( )SD .3 A correlation is a z Î ( )S SD ´ . A correlation z  is symmetric if 1 2( , )s sz =

2 1( , )s sz  for all 1 2( , )s s S SÎ ´ . Aumann (1974, 1987) extended the notion of the 
Nash equilibrium to allow players’ correlated actions. 

 
Definition 1 (cf. Aumann (1974, 1987)) A symmetric ( )S Sz ÎD ´  is a correlated 
equilibrium if for all 1s SÎ , 
 

2 2

1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , )
s S s S

u s s s s u s s s sz z
Î Î

¢³å å   for all 1s S¢ Î . (1) 

 
A correlated equilibrium can be viewed as the outcome of a Bayesian 

maximization of players in relation to a random device, which is a lottery 
mechanism for selecting a private message for each agent. 

In formal terms, a random device is a tuple ( , )F M p= , where M is a nonempty 
finite set, the message space is 1 2M M´  with 1 2M M M= = , and p  is a 
symmetric correlation over the message space. 

For any random device ( , )F M p= , an assignment function is a function : Md
( )S®D , i.e., d  assigns a mixed action ( )md  for every observed message m . 

For each m MÎ  and s SÎ , we use ( | )s md  to denote the probability that s  is 
played under mixed action ( )md . We use MQ  to denote the set of assignment 
functions, i.e., { | : ( )}MQ M Sd d= ® D .4 

An assignment function d  is pure if for all m MÎ  there exists an s SÎ  such 
that ( | ) 1s md = . We use MT  to denote the set of pure assignment functions. 

An assignment pair is a pair 1 2( , ) M MQ Qd d Î ´ . An assignment pair 1 2( , )d d  is 
symmetric if 1 2d d= . 
____________________ 

3 For any finite set X , we use ( )XD  to denote the set of probability measures over X . 
4 We view MQ  as the set ( )m M SÎP D , which is a subset in the linear space #( )#( )S M¡  

endowed with the Euclidean topology. For every , MQd d ¢Î  and every [0,1], (1 )l ld l d ¢Î + -  is 
the element in MQ  where ( (1 ) )( | ) ( | ) (1 ) ( | )s m s m s mld l d ld l d¢ ¢+ - = + -  for all s SÎ  and all 
m MÎ . Thus, MQ  is a compact and convex set. 
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We say that a correlation ( )S SmÎD ´  is generated by a random device 
( , )F M p=  and an assignment pair 1 2( , ) M MQ Qd d Î ´ , and we write 

,
1 2( , )MK pm d d= , if for all 1 2( , )s s S SÎ ´ , 

 

1 2

1 2 1 2 1 1 1 2 2 2
( , )

( , ) ( , ) ( | ) ( | )
m m M M

s s m m s m s mm p d d
Î ´

= å .  (2) 

 
Given any random device ( , )F M p=  and any assignment pair 1 2( , )d d Î
M MQ Q´ , the expected payoff to agent 1 is as follows: 
 

1 2

,
1 2 1 2 1 2

( , )

( , ) ( , ) ( , )M

s s S S

U u s s s sp d d m
Î ´

= å ,  where ,
1 2( , )MK pm d d= . (3) 

 

By symmetry, the expected payoff for agent 2 is ,
2 1( , )MU p d d . 

For any random device ( , )F M p= , we define the symmetric normal form game 
,

1 2 1 2{ , ; , }M R R U UpG =  where the strategy sets 1 2
MR R Q= = , and the payoff 

functions ,
1 1 2 2 2 1 1 2( , ) ( , ) ( , )MU U U pd d d d d d= =  for all 1 2( , ) M MQ Qd d Î ´ . 

We frequently consider a device in which M S= . To simplify the notation, for a 
device with ( , )F S p=  we often drop the superscript “ S ” in the expressions 
“ ,SK p ,” “ ,SU p ,” “ SQ ,” “ ST ,” and “ ,S pG ,” and write: “ Kp ,” “Up ,” “ Q ,” “ T ,” and 
“ pG .” 

For any random device ( , )F M p= , a Nash equilibrium in ,M pG  is a pair 

1 2( , ) M MQ Qd d Î ´  such that for all , {1,2}i jÎ  with i j¹ : 
 

, ,( , ) ( , )M M
i j i jU Up pd d d d¢³   for all M

i Qd ¢Î .   (4) 

 
A mechanism is a tuple ( , , )M p d=M  in which ( , )M p  is a random device, 

and MQd Î . 
For any symmetric correlation ( )S Sz ÎD ´ , we are particularly interested in the 

direct mechanism for z , i.e., the mechanism ( , , )idS z d=M  where id Qd Î  is 
the obedient (identity) assignment function. That is, for all s SÎ : 

 
( | ) 1id s sd =   and  ( | ) 0id s sd ¢ =  for \ { }s S s¢Î .  (5) 

 
Under the direct mechanism ( , , )idS z d=M , the direct random device ( , )F S z=  
generates messages 1 2( , )s s . When an agent i  receives a message is SÎ , it means 
that the device recommends that he plays the action is . 

For every symmetric correlation ( )S Sz ÎD ´  and any mechanism =M
( , , )M p d , we say that z  is realized by M  if 

 
a) ( , )F M p=  and ( , )d d  generate z , i.e., , ( , )MK p d d z= , 
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b) ( , )d d  is a Nash equilibrium in ,M pG . (6) 
 
In view of (1), it is clear that a symmetric ( )S Sz ÎD ´  is a correlated 

equilibrium if and only if the obedient assignment pair ( , )id idd d  is a Nash 
equilibrium in zG . That is, being obedient (playing the recommended actions) is 
the best response for an agent if the opponent is also obedient. 

In general, it is well known that a symmetric ( )S Sz ÎD ´  is a correlated 
equilibrium if and only if there is a (not necessarily direct) mechanism realizing 
z .5 

 
2.2. Evolutionary Stability for Correlation and Mechanism 

 
To study the evolutionary stability of a correlated equilibrium, we study the 

evolutionary stability of a mechanism that realizes a correlated equilibrium. 
First, we review the standard concept of evolutionary stability for a Nash 

equilibrium. For any ( , ) ( ) ( )x y S SÎD ´D , we use ( , )V x y  to denote the (expected) 
payoff for the first player when ( , )x y  is used, i.e., 

 

1 2

1 2 1 2
( , )

( , ) ( ) ( ) ( , )
s s S S

V x y x s y s u s s
Î ´

= å .  (7) 

 
Definition 2 (Maynard Smith (1982)) For a given symmetric game G , an 
evolutionarily stable strategy (ESS) is an ( )x SÎD  such that for every ( )y SÎD  
with x y¹ , there is an 0e >  such that for all (0, )e eÎ : 
 

(1 ) ( , ) ( , ) (1 ) ( , ) ( , )V x x V x y V y x V y ye e e e- + > - + .  (8) 

 
Intuitively, an ESS x  is a conventional (monomorphic) mixed action played by 

a population that cannot be invaded by a small group of mutations playing another 
mixed action y . 

It is well known that x is an ESS if and only if x  satisfies the following best-
reply conditions: 

 
a) ( , ) ( , )V y x V x x£   for all ( )y SÎD ; 
b) ( , ) ( , )V y x V x x= Þ ( , ) ( , )V y y V x y<   for all ( )y SÎD  with y x¹ .  (9) 

 
(Cf. Weibull (1995), p.37, Proposition 2.1.) 

____________________ 
5 Indeed, z  is realized by the direct mechanism ( , , )idS z d  if and only if z  is realized by some 

(not necessarily direct) mechanism ( , , )M p d . The “only if” part is clear; the “if” part can be proved 
by the argument as used in the third and fourth paragraphs in the proof of Proposition 2. 
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To study the evolutionary stability of a mechanism, we must take note of a 
special feature. Although we always treat any distinct mixed actions ,y y¢  as 
different when defining an ESS, it is not always natural to treat any distinct 
assignments ,d d ¢  as different for a mechanism. They may generate the same 
correlation over S S´  no matter what assignment functions the opponents use. 
We formalize this intuition as follows: 

 
Definition 3 Consider any random device ( , )F M p= . For any assignment 
functions , MQd d ¢Î , we say that d  and d ¢  are equivalent and write ,M pd d ¢;  
if 

 
, ,( , ) ( , )M MK Kp pd d d d¢¢ ¢ ¢¢=   for all MQd ¢¢Î . (10) 

 
To simplify the notation, when M S= , we often write “ p; ” instead of “ ,S p; .” 
It follows easily from Definition 3 that for any random device ( , )F M p=  and 

any MQd Î , the set ,{ : }M MQ pd d d¢ ¢Î ;  is closed and convex. 
We provide an example of a pair of equivalent assignments and a pair of 

nonequivalent assignments in Examples 1 and 2, respectively. 
The following property is immediate based on the definition of equivalence. 
 

Lemma 1 Consider any random device ( , )F M p= , and any assignment functions 
, MQd d ¢Î . If ,M pd d ¢; , then 

 
, , , ,( , ) ( , ) ( , ) ( , )M M M MK K K Kp p p pd d d d d d d d¢ ¢ ¢ ¢= = = .   (11) 

 
Proof: Let ,M pd d ¢; . Substitute d d¢¢ =  into (10). We have: , ( , )MK p d d =

, ( , )MK p d d¢ . As the correlation , ( , )MK p d d  is symmetric, so is , ( , )MK p d d¢ . 
Hence, , , ,( , ) ( , ) ( , )M M MK K Kp p pd d d d d d¢ ¢= = . By substituting d d¢¢ ¢=  into 
(10), we also have the following: , ,( , ) ( , )M MK Kp pd d d d¢ ¢ ¢= . Thus, (11) holds. 
Q.E.D. 

Condition (11) has the following implications for the expected payoffs: 
 

, , , ,( , ) ( , ) ( , ) ( , )M M M MU U U Up p p pd d d d d d d d¢ ¢ ¢ ¢= = = .  (12) 
 
The converse of Lemma 1 is true when M S=  and idd d= , as shown by the 

following lemma. 
 

Lemma 2 Consider a random device ( , )F S p= . For all Qd ¢Î , 
 

( , )id idKp pd d p d d¢ ¢= Þ ; . (13) 
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Proof: Consider any Qd ¢Î  with ( , )idKp d d p¢ = . Then, for all 1 2( , )s s S SÎ ´ , 
we see that 
 

1 2

1 2 1 2 1 2 2 2
( , )

( , ) ( , ) ( | ) ( | )id

s s S S

s s s s s s s sp p d d
¢ ¢ Î ´

¢ ¢ ¢ ¢ ¢= å   

1

1 2 1 1( , ) ( | )
s S

s s s sp d
¢Î

¢ ¢ ¢=å .  (14) 

 
Now, consider any Qd ¢¢Î . We denote 1 ( , )Kzm d d¢ ¢¢=  and 2 ( , )idKzm d d ¢¢= . 

Then, for all 1 2( , )s s S SÎ ´ , we have the following: 
 

1 2

1 1 2 1 2 1 2 2 2
( , )

( , ) ( , ) ( | ) ( | )
s s S S

s s s s s s s sm p d d
¢ ¢ Î ´

¢ ¢ ¢ ¢ ¢¢ ¢= å   

2 1

2 2 1 2 1 1( | ) ( , ) ( | )
s S s S

s s s s s sd p d
¢ ¢Î Î

¢¢ ¢ ¢ ¢ ¢ ¢=å å  

2

2 2 1 2( | ) ( , )
s S

s s s sd p
¢Î

¢¢ ¢ ¢=å  

1 2

2 2 1 2 1 1
( , )

( | ) ( , ) ( | )id

s s S S

s s s s s sd p d
¢ ¢ Î ´

¢¢ ¢ ¢ ¢ ¢= å  

2 1 2( , )s sm= .  (15) 

 
Thus, ( , ) ( , )idK Kp pd d d d¢¢ ¢ ¢¢= .  Q.E.D. 

Lemma 2 is useful for checking the ,M p;  relation for the case in which M S=  
and idd d= . 

 
Example 1 Let { , }S X Y=  and device ( , )F S p= , where (1 / 4) (1 / 4)XXp = +
XY (1 / 4) (1 / 4)YX YY+ + . Let Qd ¢Î  be such that ( ) (1 / 2) (1 / 2)X X Yd ¢ = + , 
and ( ) (1 / 2) (1 / 2)Y X Yd ¢ = + . Then, ( , )idKp d d p¢ = . Thus, based on Lemma 2, 

idpd d¢ ; . 
 

The following example shows that for an arbitrary random device ( , )F M z= , 
condition (11) does not imply condition (10). 

 
Example 2 Let { , }S X Y=  and device ( , )F M p= , where { , , , }M a b c d=  and 

(1 / 4) (1 / 4) (1 / 4) (1 / 4)aa bb cd dcp = + + + . Consider the assignment functions ,d  
,d ¢ MQd ¢¢Î , where 

 
( )a Xd =   ( )a Yd ¢ =   ( )a Xd ¢¢ =  

( )b Yd =   ( )b Xd ¢ =   ( )b Xd ¢¢ =  
( )c Xd =   ( )c Yd ¢ =   ( )c Xd ¢¢ =  
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( )d Yd =   ( )d Xd ¢ =   ( )d Yd ¢¢ = . (16) 

 
Then, we have , , , ,( , ) ( , ) ( , ) ( , )M M M MK K K Kp p p pd d d d d d d d¢ ¢ ¢ ¢= = = = (1 / 4)XX

(1 / 4) (1 / 4) (1 / 4)XY YX YY+ + + . However, , ( , )MK p d d ¢¢ = (1 / 4)XX (1 / 2)YX+ +
,(1 / 4) (1 / 2) (1 / 4) (1 / 4) ( , )MXY XX YX YY K p d d¢ ¢¢¹ + + = . 

 
With the equivalence relation ,M p; , we define the following evolutionary 

stability for an assignment in the game ,M pG . 
 

Definition 4 For any random device ( , )F M p= , an * -evolutionarily stable strategy 
( ESS* ) for the game ,M pG  is a MQd Î  such that for every MQd ¢Î  with 

,M pd d¢ /; , there is an 0e >  such that for all (0, )e eÎ : 
 

, , , ,(1 ) ( , ) ( , ) (1 ) ( , ) ( , )M M M MU U U Up p p pe d d e d d e d d e d d¢ ¢ ¢ ¢- + > - + . (17) 

 
(Note that for those d ¢  with ,M pd d¢ ; , based on (12), the “>” in (17) cannot 
hold, as we must instead have the “=.”) 

We obtain a similar characterization for (9a,b) for our ESS* . 
 

Proposition 1 For any random device ( , )F M p= ,  a MQd Î  is an ESS*  for 
,M pG  if and only if it satisfies the following best-reply conditions: 

 
a) , ,( , ) ( , )M MU Up pd d d d¢ £    for all MQd ¢Î ; 

b) , , , ,( , ) ( , ) ( , ) ( , )M M M MU U U Up p p pd d d d d d d d¢ ¢ ¢ ¢= Þ <   

for all MQd ¢Î  with ,M pd d¢ /; . (18) 

 
Proof: This can be proved by standard ESS arguments (cf. Weibull (1995), pp. 36-
37). For the reader’s convenience, we provide the details here. 

Consider any correlation p , and consider the random device ( , )F M p= . 
First, let d  be an ESS*  for ,M pG . To see (18a), suppose there exists a 

MQd ¢Î  such that , ,( , ) ( , )M MU Up pd d d d¢ > . Then, ,M pd d¢ /; . Furthermore, for 
all small 0e > , we have the following: 

 
, , , ,(1 ) ( , ) ( , ) (1 ) ( , ) ( , )M M M MU U U Up p p pe d d e d d e d d e d d¢ ¢ ¢ ¢- + < - + .  (19) 

 
Thus, d  is not an ESS* . 

For (18b), suppose , ,( , ) ( , )M MU Up pd d d d¢ =  and , ,( , ) ( , )M MU Up pd d d d¢ ¢ ¢>  
for some MQd ¢Î  with ,M pd d¢ /; . Then, (19) holds for all 0e > . Hence, d  is 
not an ESS* . 
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Conversely, let d  satisfy (18). Consider any MQd ¢Î  with ,M pd d¢ /; . Based 

on (18a), either , ,( , ) ( , )M MU Up pd d d d¢ <  or , ,( , ) ( , )M MU Up pd d d d¢ = . 

(Case 1) Suppose , ,( , ) ( , )M MU Up pd d d d¢ < . Then, (17) holds for all small 
0e > . 

(Case 2) Suppose , ,( , ) ( , )M MU Up pd d d d¢ = . Then, based on (18b), we have the 
following: , ,( , ) ( , )M MU Up pd d d d¢ ¢ ¢< . As such, (17) holds for all 0e > . 

Thus, d  is an ESS* .  Q.E.D. 
Using the ESS*  Definition 4, we now define evolutionary stability for a 

correlation. 
 

Definition 5 An evolutionarily stable correlation (ESC) is a symmetric ( )S Sz ÎD ´ , 
such that there exists a mechanism ( , , )M p d=M  that evolutionarily realizes z , i.e., 
 

a) ( , )F M p=  and ( , )d d  generate z , i.e., , ( , )MK p d d z= , 

b) d  is an ESS*  for ,M pG .  (20) 
 
Definition 5 uses an arbitrary mechanism. In the following, Definition 6 uses 

only the direction mechanism ( , , )idS z d=M  for z . As shown in Proposition 2, 
the two definitions are equivalent. 

 
Definition 6 An evolutionarily stable correlation (ESC) is a symmetric z Î ( )S SD ´  
such that idd  is an ESS*  for zG . 
 

In the sense of Definition 6, a symmetric ( )S Sz ÎD ´  is an ESC if the 
following applies: for every assignment function Qd ¢Î  with idzd d¢ /; , there is 
an 0e >  such that for all (0, )e eÎ : 

 
(1 ) ( , ) ( , ) (1 ) ( , ) ( , )id id id idU U U Uz z z ze d d e d d e d d e d d¢ ¢ ¢ ¢- + > - + . (21) 

 
Equivalently, if: 

 
a) ( , ) ( , )id id idU Uz zd d d d¢ £    for all Qd ¢Î ; 

b) ( , ) ( , ) ( , ) ( , )id id id idU U U Uz z z zd d d d d d d d¢ ¢ ¢ ¢= Þ <   

for all Qd ¢Î  with idzd d¢ /; . (22) 
 
Next, we discuss the intuition of an ESC z  in view of Definition 6 and (21). 

Consider a large population that obeys the signal sent by the conventional random 
device ( , )F S z= . Now, suppose that a small group of mutants appears. Mutants 
do not obey the signal sent by the conventional random device. Pairs of individuals 
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in this bimorphic population are repeatedly drawn to play the game with a uniform 
matching probability. In playing the game, the pair of players faces the conventional 
random device ( , )F S z= . The correlation z  is evolutionarily stable if the 
incumbents with obedient strategies perform better than the mutants whose 
strategies are not equivalent to the obedient strategy. Thus, the evolutionary force 
drives out the mutants. 

The intuition for the ESC given in Definition 5 is similar. 
The ESC is the analogue of the ESS for correlated equilibria. 
We end this section by noting the equivalence between Definitions 5 and 6. 
 

Proposition 2 Let ( )S Sz ÎD ´  be symmetric. Then, z  is an ESC in the sense of 

Definition 5 if and only if it is an ESC in the sense of Definition 6. 
 

Proof: Definition 6 implies Definition 5, a fortiori. We need to only prove the 
converse. 

Let z  be an ESC in the sense of Definition 5. Let mechanism ( , , )M p d=M  
evolutionarily realize z , i.e., (20) holds. Now, consider the random device 

( , )F S z=  and the obedient assignment id Qd Î . We must show that idd  is an 
ESS*  for zG , equivalently, (22) holds. 

As F and ( , )d d  generate z  (based on (20a)), we have the following: 
 

, ( , ) ( , )M id idK Kp zd d z d d= = .  (23) 
 

As such, 
 

, ( , ) ( , )M id idU Up zd d d d= . (24) 

 
Now, consider any Qd ¢Î . Define MQd ¢Î%  as the composition of d ¢  and d , 
i.e., 

 
( | ) ( | ) ( | )

s S

s m s s s md d d
¢Î

¢ ¢ ¢ ¢=å%   for all s SÎ  and m MÎ .  (25) 

 
Then, 

 
, ( , ) ( , )M idK Kp zd d d d¢ ¢=% , 
, ( , ) ( , )MK Kp zd d d d¢ ¢ ¢ ¢=% % . (26) 

 
As such, 
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, ( , ) ( , )M idU Up zd d d d¢ ¢=%  
, ( , ) ( , )M idU Up zd d d d¢ ¢=%  
, ( , ) ( , )MU Up zd d d d¢ ¢ ¢ ¢=% % . (27) 

 
To prove (22a), consider any Qd ¢Î . Then, 
 

,( , ) ( , )id MU Uz pd d d d¢ ¢= %   (by (27)) 
, ( , )MU p d d£   (by (18a)) 

( , )id idUz d d=   (by (24)). (28) 

 
Thus, (22a) holds. 

To prove (22b), we suppose that it does not hold. That is, there exists an 
assignment Qd ¢Î  with idzd d¢ /;  such that 

 
( , ) ( , )id id idU Uz zd d d d¢ =   and  ( , ) ( , )idU Uz zd d d d¢ ¢ ¢³ .  (29) 

 
Based on (24) and (27), we have the following: 

 
, ,( , ) ( , )M MU Up pd d d d¢ =%   and  , ,( , ) ( , )M MU Up pd d d d¢ ¢ ¢³% % % .  (30) 

 
We now show that ,M pd d¢ /% ; . Suppose this is not the case, i.e., ,M pd d¢% ; . Then, 

 
,( , ) ( , )id MK Kz pd d d d¢ ¢= %   (by (26)) 
, ( , )MK p d d=   (as ,M pd d¢% ; ) 

( , )id idKz d d=  (by (23)). (31) 

 
Therefore, based on Lemma 2, we have idzd d¢ ; , and a contradiction is derived. 
As ,M pd d¢ /% ; , (30) contradicts (18b). This establishes (22b).  Q.E.D. 

 
2.3. Properties for ESC 

 
In this section, we study the properties of the ESC. Our analysis relies on 

Definition 6, which uses the direct mechanism. We use the best-reply 
characterization (22). 

Proposition 3 immediately follows from (22a). 
 

Proposition 3 If ( )S Sz ÎD ´  is an ESC, then z  is a correlated equilibrium. 
 



The Korean Economic Review  Volume 33, Number 1, Summer 2017 66

A symmetric ( )S Sz ÎD ´  is a strict correlated equilibrium if for all 1s SÎ  with 

2 1 2( , ) 0s S s szÎå > , 
 

2 2

1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , )
s S s S

u s s s s u s s s sz z
Î Î

¢>å å  for all 1s S¢ Î  with 1 1s s¢ ¹ . (32) 

 
Proposition 4 immediately follows from Proposition 1 (with (22)) and Lemma 2.6 
 

Proposition 4 A strict correlated equilibrium z  is an ESC. 
 
The following example shows that the converse of Proposition 3 is not true, i.e., 

not every correlated equilibrium is an ESC.  
 

Example 3 Consider the following game : 
 

(1,1) (0,0)

(0,0) (1,1)

X Y

X

Y

. (33) 

 
It is easy to verify that a symmetric ( )S Sz ÎD ´  is a correlated equilibrium if and 
only if it has the form aXX bYY cXY cYXz = + + +  with a c³  and b c³ . 

We suppose that 0c = , then, z  is a strict correlated equilibrium. As such, 
based on Proposition 4, z  is an ESC. 

Suppose 0c > . We show that z  is an ESC if and only if a c>  and b c> . 
First, suppose ,a b c> . In this case, z  is a strict correlated equilibrium; therefore, 
it is an ESC. Next, suppose a c=  or b c= . In this case, z  is not an ESC. 
Without loss of generality, let a c= . Consider the assignment d  where 

( )X Yd =  and ( )Y Yd = . Then, ( , ) ( , )id id idU c b a b Uz zd d d d= + = + = , but 
( , ) 1 ( , )idU b c Uz zd d d d= > + = . Thus, z  violates (22b) and is not an ESC. 

Thus, not every correlated equilibrium is an ESC. 
 
The following example shows that the converse of Proposition 4 is not true, i.e., 

an ESC is not necessarily a strict correlated equilibrium. 

____________________ 
6 To prove Proposition 4, consider any Qd ¢Î . There are two cases: 
(Case 1) Suppose 1 1( | ) 1s sd ¢ ¹  for some 1s SÎ  with 

2 1 2( , ) 0s S s szÎå > . As z  is a strict 

correlated equilibrium, we have 
1 2 21 2 1 2( , ) ( , ) [ ( , ) ( , )id id id
s S s S s SU U u s s s sz zd d d d zÎ Î Î¢- = å å -å

1
( s S¢Îå 1 2 1 1 1 2( , ) ( | )) ( , )] 0u s s s s s sd z¢ ¢ ¢ > . 

(Case 2) Suppose 1 1( | ) 1s sd ¢ =  for all 1s SÎ  with 
2 1 2( , ) 0s S s szÎå > . Then, ( , )idKz d d z¢ = . 

Based on Lemma 2, we have idzd d¢ ; . 
These two cases establish (22). 
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Example 4 Consider the following game in which { , }S X Y=  and the payoffs are 
as follows: 

 

(1,1) (1,1)

(1,1) (0,0)

X Y

X

Y

.  (34) 

 
Then, the pure action X  is an ESS. Therefore, XXz =  is an ESC by 
Proposition 5 below. This ESC is clearly not a strict correlated equilibrium. 
 

In the following, Proposition 5 shows the relationship between the ESS and the 
ESC. 

For any , ( )x y SÎD , we denote x y´  as their product, i.e., ( )x y S S´ ÎD ´ , 
where 

 

1 2 1 2( )( , ) ( ) ( )x y s s x s y s´ =   for all 1 2( , )s s S SÎ ´ . (35) 

 
Proposition 5 Let ( )x SÎD  and x xz = ´ . Then, x  is an ESS if and only if z  is 
an ESC. 
 
Proof: (“Only if” Part) Let x  be an ESS. Based on (9a), ( ,x x ) is a Nash 
equilibrium. As such, z  is a correlated equilibrium. Therefore, z  satisfies (22a). 
Thus, (22b) remains to be proved. Consider any Qd ¢Î  with idzd d¢ /; . We 
choose the strategy ( )y SÎD , where 
 

( ) ( ) ( | )
s S

y s x s s sd
¢Î

¢ ¢ ¢=å   for all s SÎ . (36) 

 
Then, based on the definition of Kz , we have the following: 

 
( , )id idK x xz d d = ´  

( , )idK x yz d d ¢ = ´  

( , )idK y xz d d¢ = ´  

( , )K y yz d d¢ ¢ = ´ . (37) 
 

Hence, 
 

( , ) ( , )id idU V x xz d d =   ( , ) ( , )idU V y xz d d¢ =  

( , ) ( , )idU V x yz d d ¢ =   ( , ) ( , )U V y yz d d¢ ¢ = . (38) 
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As idzd d¢ /; , we must have y x¹ . Then, (22b) follows from (9b). 
(“If” Part) Let z  be an ESC. For any ( )y SÎD  with y x¹ , we choose the 
assignment Qd ¢Î , where 

 
( | ) ( )s s y sd ¢ ¢ ¢=   ,s s S¢" Î .  (39) 

 
Then, (37) and (38) follow. As y x¹ , based on (37), we have id zd d ¢/; . 
Therefore, (9a) and (9b) follow from (22a) and (22b), respectively.  Q.E.D. 
 

Proposition 5 shows that the ESC is a generalization of the ESS. 
It is well known that for any symmetric game there are at most a finitely many 

ESS’s. A standard proof for the finiteness property follows from the best-reply 
characterization (9) (cf. Weibull (1995), p. 41.). In particular, the property (9) has a 
strong implication for the support Supp( × ) of ESS, including that Supp( )y Í/  
Supp( )x  for every ESS x  and y  with x y¹ . This support property ensures 
that the set of ESSs is finite. However, the best-reply characterization (22) does not 
imply such a restriction for the support of an ESC.7 In (9), the ESS x  is a choice 
variable; however, in (22), the ESC z  is not. Without such a support restriction, 
the set of ESCs need not be finite. In Example 3, there are only two ESSs but 
infinitely many ESCs. In fact, using (21), it is easy to verify that if the set of ESCs is 
nonempty, then it is convex. Thus, if there is more than one ESC, then there are 
infinitely many. 

The ESS and ESC do share common characteristics. For example, it is well 
known that the existence of an ESS is not guaranteed. In the next example, we show 
that the same is true for the ESC. 

 
Example 5 Consider the following rock-scissors-paper game (cf. Weibull (1995), p. 
28, Example 1.12): 
 

(1,1) (2,0) (0,2)

(0,2) (1,1) (2,0)

(2,0) (0,2) (1,1)

X Y Z

X

Y

Z

. (40) 

 
If ( )S Sz ÎD ´  is symmetric, then it takes the form aXX bYY cZZ dXY+ + + +
dYX eXZ eZX fYZ fZY+ + + + . It is easily verified that if z  is a correlated 
equilibrium, then we must have 1 / 9a b c d e f= = = = = = , which is the product 

____________________ 
7 That is, in general, it is not true that Supp(z ) Í/ Supp(z ¢ ) for every ESC z  and z ¢  with 

z z ¢¹ . 
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measure of the symmetric Nash equilibrium with the mixed strategy (1 / 3)X +
(1 / 3) (1 / 3)Y Z+ . This Nash equilibrium mixed strategy is not an ESS, as any 
mutation of a pure action will perform equally well as that of a mixed action. 
Consequently, this game has no ESC.8 

 
Another feature shared by the ESS and ESC is local superiority. Any ESS earns a 

higher payoff against all nearby mutants than the mutants earn against themselves. 
In formal terms, an ( )x SÎD  is locally superior if  

 
there is a neighborhood N  of x  in ( )SD  such that 

( , ) ( , )V x y V y y>  for all y NÎ  with y x¹ .  (41) 

 
It is well known that an ( )x SÎD  is an ESS if and only if is locally superior. (Cf. 
Weibull (1995), p. 45, Proposition 2.6.) 

We develop an analogue for the ESC. For simplicity, we do it only for the direct 
mechanism. 

 
Definition 7 Given a random device ( , )F S z= , an assignment d  is locally 
superior if there is a neighborhood N  of d  in Q  such that ( , )Uz d d ¢ >

( , )Uz d d¢ ¢  for all Nd ¢Î  with zd d¢ /; . We say z  is locally superior if the 
obedient assignment idd  is locally superior. 
 

Proposition 6 shows that Definition 7 is a generalization of the standard 
definition of local superiority for the ESS. 

 
Proposition 6 Let ( )x SÎD  and x xz = ´ . Then, z  is locally superior (in the 

sense of Definition 7) if and only if x is locally superior (in the sense of (41)). 
 

Proof: It is well known that an ( )x SÎD  is an ESS if and only if it is locally 
superior in the standard ESS sense (as defined in (41)). Based on Propositions 5 
and 7, x  is an ESS if and only if x xz = ´  is an ESC if and only if it is locally 
superior in the sense of Definition 7.  Q.E.D. 
 
____________________ 

8 The following is an example of a case in which there exist some correlated equilibria that are not 
Nash equilibria, but no ESC exists. Consider the following: 

 

(0,0) (0,0)

(0,0) (0,0)

X Y

X

Y

. 

 

For all (0,1)aÎ , the correlation (1 )aXX a YY+ -  is a correlated equilibrium but not a Nash 
equilibrium; however, no ESC exists. 
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Proposition 7 is an analogue of similar ESS results (cf. Weibull (1995), 
Proposition 2.6). Our proof requires Lemma 3, which shows that the invasion 
barrier e  can be taken uniformly for all mutants. 

 
Lemma 3 Let symmetric ( )S Sz ÎD ´  be an ESC. Then, 
(a) There exists a uniform invasion barrier 0e > , i.e., for all Qd ¢Î  with idzd d¢ /; , 

(21) holds for all (0, )e eÎ . 
(b) z  is locally superior. 
 
Proof: See the Appendix. 

 
Proposition 7 A symmetric ( )S Sz ÎD ´  is an ESC if and only if z  is locally 
superior. 

 
Proof: The “only if” part is given by Lemma 3b. We need to only prove the “if” part. 

Suppose an open set N QÍ  is a neighborhood of idd  as given in Definition 7. 
Note that for every Qd ¢Î , there is a small 0e >  such that for all (0, )e eÎ , 

(1 ) idw Ned e d¢= + - Î . If idzd d¢ /; , then we have idw z d/; . Based on the local 
superiority of idd , we have the following: 

 
( , ) ( , )idU w U w wz zd > . (42) 

 
As Uz  is bilinear, we have the following: ( , ) ( , ) (1 )U w w U w Uz z ze d e¢= + -
( , )id wd . Thus, (42) ensures that ( , ) ( , )idU w U wz zd d ¢> , i.e., (1 ) ( ,idUze d-

)idd + ( , ) (1 ) ( , ) ( , )id idU U Uz z ze d d e d d e d d¢ ¢ ¢ ¢> - + . Therefore, z  is an ESC. 
Q.E.D. 

 
To conclude this section, we compare our work with related work of Shmida and 

Peleg (1997) and Cripps (1991). Consider a given symmetric game G  with S  
and u . Their work shows that a symmetric ( )S Sz ÎD ´  is a strict correlated 
equilibrium if and only if z  is generated by some pure strategy d  that is an ESS 
in some asymmetric animal conflict (cf. Selten (1980))9 with role asymmetry and 
payoff-irrelevant roles. (Cf. Shmida and Peleg (1997), Theorem 4.1, and Cripps 
(1991), Theorem.) Such an asymmetric conflict can be identified as a game ,M pG , 
where ( ,M p ) is a random device such that the symmetric ( )M Mp ÎD ´  satisfies 
the role asymmetry property (i.e., ( , ) 0m mp =  for all m MÎ ), and the message 
set M  is interpreted as set of possible types. 

____________________ 
9 The term asymmetric animal conflict is from the study by Selten (1980) and Shmida and Peleg 

(1997) and is called a simple contest in the study by Cripps (1991). Shmida and Peleg (1997) restricted 
their study to symmetric bimatrix games, and Cripps (1991) focused on general bimatrix games. 



Chongmin Kim ∙ Kam-Chau Wong: Evolutionarily Stable Correlation 71

Our work shares some similarities with that of the preceding authors in that we 
commonly relate the notion of correlated equilibria to the idea of evolutionary 
stability by using phenotypic conditional behavior with random devices ( , )M p . 
However, two distinctions should be made clear. 

First, in formalizing conditional behavior, these authors required a role 
assignment measure p  to satisfy the role asymmetry property. We do not require 
any such role asymmetry, although we allow it. 

Second, the ESC here is more general than these authors’ idea of realizing a strict 
correlated equilibrium. While our ESC generalizes the ESS, these authors failed to 
realize all ESSs as their strict correlated equilibria failed to include all of the ESSs 
in a given normal form game.10 

 
 
III. Evolutionary Stability, Perfection, and Properness 

 
It is well known that for an ESS x , the symmetric pair ( ,x x ) is a perfect and 

proper equilibrium. Here we provide similar results for the ESC. For this purpose, 
we need analogues of perfect and proper equilibria in our correlation context. Our 
approach is restricted to the direct random device ( , )F S z= . 

First, we recall the definitions of a perfect and proper equilibrium in the given 
game G . 

We require the following notation: 
 

( ) { :( )( ( ) 0}S x s S x sD = ÎD " Î >
o

, 

{ ( ) :[( )( 0)]&( 1)}s s S s s
s S

P s Se e e eÎ
Î

= = " Î > <å , 

( ) { :( )( ( ) )}sS x X s S x se eD = Î " Î ³   Pe" Î . (43) 

 
That is, ( )SD

o
 is the set of completely mixed action, P  is the set of perturbations, 

and ( )SeD  is the set of mixed actions allowable for the given perturbation e . 
 

Definition 8 A perfect equilibrium in G  is a pair 1 2( , ) ( ) ( )x x S SÎD ´D  that 

____________________ 
10 For example, consider the following Hawk-Dove game: 

 

(0,0) (4,2)

(2,4) (2,2)

H D

H

D

. 

 

The mixed strategy (1 / 2) (1 / 2)H D+  is an ESS. However, its product measure is neither a strict 
Nash equilibrium nor a strict correlated equilibrium. 
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satisfies one of the following equivalent conditions:11 
 

Condition A There exists a sequence 1 2( , ) ( ) ( )n nx x S SÎD ´D
o o

 such that 1 2( , )n nx x ®

1 2( , )x x , and for each n  and each , {1,2}i jÎ  with i j¹ , ix  is a best reply 
to n

jx  over ( )SD , i.e., 
 

( , ) ( , )n n
i j jV x x V x x¢³   ( )x S¢" ÎD .  (44) 

 
Condition B There exists a sequence 1 2( , )n n P Pe e Î ´  and a sequence 

1 2
1 2( , ) ( ) ( )n n
n nx x S Se eÎD ´D  such that 1 2( , ) (0,0)n ne e ® , 1 2 1 2( , ) ( , )n nx x x x® , and 

for each n  and each , {1,2}i jÎ  with , n
ii j x¹  is a best reply to n

jx  over 
( )n

i
SeD , i.e.: 

 
( , ) ( , )n n n

i j jV x x V x x¢³   ( )n
i

x Se
¢" ÎD .  (45) 

 
Definition 9 A proper equilibrium in G  is a pair 1 2( , ) ( ) ( )x x S SÎD ´D  that 
satisfies the following: 
 
Condition C There exists a sequence (0,1)ne Î  and a sequence 1 2( , ) ( )n nx x SÎD ´

o

( )SD
o

 such that 0ne ® , 1 2 1 2( , ) ( , )n nx x x x® , and for each n  and each 

, (1,2}i jÎ  with i j¹ : 
 

( , ) ( , ) ( ) ( )n n n n n
j j i iV s x V s x x s x se¢ ¢¢ ¢ ¢¢< Þ £   ,s s S¢ ¢¢" Î .  (46) 

 
We now extend the definition of a perfect Nash equilibrium to correlated 

equilibria. We require the following notation: 
 

( ) { :( , )( ( | ) 0)}Q S Q s s S s sd d¢ ¢= Î " Î >
o

, 

, , ,{ ( ) :[( , )( 0)]S
s s s s S s sP s s Se e e¢ ¢ ¢Î ¢= = " Î > ,&[( )( 1)]}s s

s S

s S e ¢
¢Î

" Î <å , 

,{ :( , )( ( | ) )}s sQ Q s s S s se d d e ¢¢ ¢= Î " Î ³   for all SPe Î .  (47) 

 
Each Qd Î

o
 assigns a completely mixed action ( )sd  for all s SÎ . Each 

SPe Î  is a perturbation for strategies in Q , and Qe  is the set of allowable 
assignments under the perturbation e . For any Qed Î , d  assigns a completely 
mixed action ( ) ( )

s
s Sed ÎD  for all s SÎ , where ,( )s s s s S Pe e ¢ ¢Î= Î . 

____________________ 
11 Cf. Mas-Colell et al. (1995), Proposition 8.F.1. 
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Definition 10 A perfect correlated equilibrium is a symmetric ( )S Sz ÎD ´  such 
that there is a { : }idD Qd d d d¢ ¢Î = Î ;  that satisfies one of the following 
equivalent conditions: 
 
Condition A′ There exists a sequence 1 2( , )n n Q Qd d Î ´

o o
 such that 1 2( , )n nd d ®

( , )d d , and for each n  and each {1,2}jÎ , d  is a best reply to n
jd  over 

Q , i.e., 
 

( , ) ( , )n n
j jU Uz zd d d d¢³   Qd ¢" Î . (48) 

 
Condition B′ There exists a sequence 1 2( , )n n S SP Pe e Î ´  and a sequence 

1 2( , )n nd d Î
1 2
n nQ Qe e´  such that 1 2( , ) (0,0)n ne e ® , 1 2( , ) ( , )n nd d d d® , and for 

each n  and each , {1,2}i jÎ  with i j¹ , n
id  is a best reply to n

jd  over 
n
i

Qe , i.e., 
 

( , ) ( , )n n n
i j jU Uz zd d d d¢³   n

i
Qed ¢" Î .  (49) 

 
In the Appendix, we provide a proof for the equivalence between Conditions A′ 

and B′. 
To define a proper correlated equilibrium, we require the following notation. For 

every ,s s S¢Î , and Qd Î , we define the following: 
 

2 2

2 2 2 2( , | ) ( , ) ( | ) ( , )
s S s S

U s s s s s s u s sz d z d
¢Î Î

¢ ¢ ¢ ¢=åå .  (50) 

 
Conditional on the event that player 2 uses the assignment d , and player 1 is 
recommended to play action s , ( , | )U s sz d¢  can be viewed as the “expected 
payoff” earned by player 1 by using action s¢ . (More precisely, the true conditional 
expected payoff is 

2

1
2( ( , )) ( , | )s S s s U s szz d-

Î ¢å  for 
2 2( ( , ) 0)s S s szÎå > .12 

In our definition of a proper correlated equilibrium, for each s SÎ , the term 
( , | )U s sz d¢  plays a role similar to that of ( , )V s y¢  in (46). 

The terms ( , | )Uz × × ×  are also useful for finding the best replies. Consider any 

1 2( , ) Q Qd d Î ´ . Note the following: 
 

1 1

1 2 1 1 1 1 2 1( , ) ( | ) ( , | )
s S s S

U s s U s sz zd d d d
¢Î Î

¢ ¢=åå . (51) 

 
Furthermore, for all s SÎ : 

____________________ 
12 Our “conditional expected” payoff notation ( , | )Uz × × ×  resembles the commonly used symbol 

Pr( | )× ×  for denoting a conditional probability measure. 
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if 
2 2( , ) 0s S s szÎå = , then ( , | ) 0U s sz d¢ =  for all s S¢Î .  (52) 

 
Then, we have the following: 
 
Lemma 4 For every 1 2( , ) Q Qd d Î ´ , the following two conditions are equivalent: 
(a) 1d  is a best reply to 2d  over Q , i.e., 1 2 2( , ) ( , )U Uz zd d d d¢³  for all Qd ¢Î . 
(b) For every s SÎ  with 

2 2( , ) 0s S s szÎå > : 
 

1 2 2( | ) 0 ( , | ) max ( , | )
s S

s s U s s U s sz zd d d
¢¢Î

¢ ¢ ¢¢> Þ =   s S¢" Î .  (53) 

 
Definition 11 A proper correlated equilibrium is a symmetric ( )S Sz ÎD ´  such 
that there is a { : }idD Qd d d d¢ ¢Î = Î ;  that satisfies the following: 

 
Condition C′ There exists a sequence of (0,1)ne Î  and a sequence 1 2( , )n nd d Î

Q Q´
o o

 such that 0ne ® , 1 2( , ) ( , )n nd d d d® , and for every n , every 

, {1,2}i jÎ  with i j¹  and every s SÎ : 
 

( , | ) ( , | ) ( | ) ( | )n n n n n
j j i iU s s U s s s s s sz zd d d e d¢ ¢¢ ¢ ¢¢< Þ £   ,s s S¢ ¢¢" Î .   (54) 

 
The following proposition shows that Definitions 10 and 11 are generalizations 

of perfect and proper Nash equilibria. 
 

Proposition 8 Let ( )x SÎD  and ( )x x S Sz = ´ ÎD ´ . Then, 
(a) ( ,x x ) is a perfect equilibrium if and only if z  is a perfect correlated equilibrium. 
(b) ( ,x x ) is a proper equilibrium if and only if z  is a proper correlated equilibrium. 

 
Proof: See the Appendix. 

Here we sketch the main idea of the proof of Proposition 8. We use two functions. 
First, for each ( )y SÎD , we define y Qd Î  by 

 
( | ) ( )y s s y sd ¢ ¢=   ,s s S¢" Î . (55) 

 
Second, for each Qd Î , we define ( )y Sd ÎD  by 

 
( ) ( ) ( | )

s S

y s x s s sd d
¢Î

¢ ¢=å   s S" Î .  (56) 

 
Then, based on the definition of Kz , we have 
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a) ( , )y yK y yz d d = ´% %    for all , ( )y y SÎD% . 

b) ( , )K y yz
d dd d = ´ %

%   for all , Qd d Î% . (57) 

 
Using these two functions, we can transform a sequence 1 2( , )n nx x  as given in 
Condition A into a sequence 1 2( , )n nd d  as given in Condition A′, and vice versa. 
Part (a) of the proposition follows, and part (b) can be proved similarly. 

The relationship between a perfect correlated equilibrium and a proper 
correlated equilibrium is the same as that for the Nash equilibrium. 

 
Proposition 9 (a) A proper correlated equilibrium is a perfect correlated equilibrium. 
(b) The converse of (a) is not true. 

 
Proof: (Part a) It suffices to consider any Qd Î , and prove that Condition C′ 
implies Condition A′. First, consider any sequences ne  and 1 2( , )n nd d , as given in 
Condition C′. We claim that 
 

d  is a best reply to 2
nd  over Q  for all large n .  (58) 

 
As 1

nd d®  and 0ne ® , we can choose an (0,1)e Î  such that for all large n : 
 

a) ne e£   

b) for all s SÎ  with 
2

2( , ) 0
s S

s sz
Î

>å :  

1( | ) 0 ( | )ns s s sd d e¢ ¢> Þ >   for all s S¢Î .  (59) 

 
Consider any large n  and any ,s s S¢Î  with 

2 2( , ) 0s S s szÎå >  and ( | ) 0s sd ¢ > . 
Then, 

 

1 1( | ) ( | )n n n ns s s sd e e e d¢ ¢¢> ³ ³   s S¢¢" Î   (60) 

 
Hence, based on (54), 

 

2 2( , | ) ( , | )n nU s s U s sz zd d¢ ¢¢³   s S¢¢" Î .   (61) 

 
That is, 2 2( , | ) max ( , | )n n

s SU s s U s sz zd d¢¢Î¢ ¢¢= . Based on Lemma 4, we see that (58) 
follows. Similarly, d  is a best reply to 1

nd  over Q  for all large n . 
Thus, by taking away the initial terms if necessary, we can assume that the 

sequence 1 2( , )n nd d  satisfies (48) for all n . Hence, the sequence satisfies the 
property given in Condition A′. 
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(Part b) When ( )S S x xz ÎD ´ = ´ , the notion of a proper equilibrium coincides 
with that of proper correlated equilibrium. It is well known that a perfect Nash 
equilibrium is not necessarily a proper Nash equilibrium, and this is also true for a 
symmetric equilibrium in a symmetric game. (For example, see Myerson (1978), p. 
78, last paragraph.)  Q.E.D. 

 
Definitions 10 and 11 use the set Q . We provide two other natural 

formalizations by using the set T  of pure assignments. We utilize a natural linear 
function mapping ( )TD  onto Q . In particular, we choose the linear function 

: ( )h T QD ®  defined by 
 

ˆ ˆ ˆ{ | ( ) }

ˆ( ( ))( | ) ( )
T s s

h x s s x
d d d

d
¢Î Î =

¢ = å   for all ,s s S¢Î .  (62) 

 
As shown in Lemma 5 in the Appendix, the function h  maps ( )TD  onto Q .13 

It also maps ( )TD
o

 onto Q
o

. 
For every , ( )x y TÎD , we define 
 

1 2

1 2 1 2
( , )

( , ) ( ) ( ) ( , )
T T

K x y x y Kz z

d d

d d d d
Î ´

= å , 

1 2

1 2 1 2
( , )

( , ) ( ) ( ) ( , )
T T

U x y x y Uz z

d d

d d d d
Î ´

= å . (63) 

 
Then, based on (62) we have 
 

( , ) ( ( ), ( ))K x y K h x h yz z= , 

( , ) ( ( ), ( ))U x y U h x h yz z= .  (64) 

 
For a given ( )S Sz ÎD ´ , we define the symmetric finite normal form game 

1 2 1 2{ , , , }R R U UzG =% % % , where the strategy sets are 1 2R R T= =% % , and for all 
, ( )x y TÎD , the payoffs 1 2( , ) ( , ) ( , )U x y U y x U x yz= = . 

____________________ 
13 However, in general h  is not a one-to-one mapping. For example, let { , }S X Y= , and 

, ( )x y TÎD , where 
 

1 2(1 / 2) (1 / 2)x d d= + ,  3 4(1 / 2) (1 / 2)y d d= + , 
 

and 
 

1( )X Xd =   2( )X Yd =   3( )X Xd =   4( )X Yd =  
1( )Y Yd =   2( )Y Xd =   3( )Y Xd =   4( )Y Yd = . 

 

Then, ( ) ( )h x h y= . 
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Definition 12 A perfect correlated equilibrium is a symmetric ( )S Sz ÎD ´  such 
that there is an 1( )x h D-Î  such that ( , )x x  is a perfect equilibrium in the game 

zG% , where { : }idD Q zd d d= Î ; . 
 
We now explain the meaning of the requirement “ 1( )x h D-Î .” For any Qd Î , 

Dd Î  means that idzd d; , i.e., they are equivalent in the sense that ( , )Kz d d ¢
( , )idKz d d ¢=  for all Qd ¢Î . For any ( )x TÎD , 1( )x h D-Î  means that 

( ) idh x z d; . As such, ( ( ), ) ( , )idK h x Kz zd d d=  for all Qd Î . As h  maps ( )TD  
onto Q , based on (64), we have the following: 

 
( , ) ( , )idK x y K yz z d=   for all ( )y TÎD . (65) 

 
Thus, x  and idd  are “equivalent.” 

 
Proposition 10 
a) Definitions 10 and 12 are equivalent. 
b) Definition 12 is equivalent to the following apparent strengthening of Definition 12: 

 
A symmetric ( )S Sz ÎD ´  is a perfect correlated equilibrium if  

( , )id idd d  is a perfect equilibrium in the game zG% . (66) 

 
c) Definition (66) is equivalent to the following apparent strengthening of Definition 10: 
 

A symmetric ( )S Sz ÎD ´  is a perfect correlated equilibrium if 

( , )id idd d  satisfies Condition (A′ ) (equivalently, (B′ )). (67) 

 
Proof: 
(Part a) Definitions 10 and 12 are equivalent because the function h  given in (62) 

satisfies property (64) and h  maps ( )TD
o

 onto Q
o

. Moreover, the continuous 

function g  given in (77) satisfies (78) and the property that ( ) ( )g Q TÍ D
o o

.14 

____________________ 
14 To prove the equivalence between Definitions 10 and 12, the details are as follows. Consider any 

symmetric ( )S Sz ÎD ´ . 
First, let Dd Î  satisfy Condition (A′), and let sequence 1 2( , )n n Q Qd d Î ´

o o
 be as given in 

Condition (A′). We choose ( ) ( )x g Td= ÎD  and choose the sequence 1 2 1 2( , ) ( ( ), ( ))n n n nx x g gd d=
( ) ( )T TÎD ´D
o o

. Then, 1( )x h D-Î  and 1 2( , ) ( , )n nx x x x® . Moreover, for all {1,2}jÎ , x  is a best 

reply to n
jx  over ( )TD . Thus, ( , )x x  is a perfect equilibrium in zG% . 

Second, let 1( )x h D-Î  be such that ( , )x x  is a perfect equilibrium in zG% . Then, there exists a 

sequence 1 2( , ) ( ) ( )n nx x T TÎD ´D
o o

 such that 1 2( , ) ( , )n nx x x x®  and for all {1,2}jÎ , x  is a best reply 

to n
jx  over ( )TD . We choose ( )h x Qd = Î  and choose the sequence 1 2 1 2( , ) ( ( ), ( ))n n n nh x h xd d = Î
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(Part b) As the finite normal form game zG%  is a two-player game, for any 
( )x TÎD , ( , )x x  is a perfect equilibrium if and only if ( , )x x  is a Nash 

equilibrium and x  is undominated (i.e., not weakly dominated by any strategy 
( )y TÎD ). (Cf. Weibull (1995), Proposition 1.4). Clearly, idd  is undominated and 

( , )id idd d  is a Nash equilibrium if and only if some 1( )x h D-Î  satisfies the same 
property, if and only if every 1( )x h D-Î  satisfies the same property. 
(Part c) This can be proved along the lines of the proof of part (a).   Q.E.D. 
 

Definition (67) is the same as Dhillon and Mertens’s (1996) definition of a 
perfect direct correlated equilibrium distribution when it is used in our symmetric 
context. Therefore, our notion of a perfect correlated equilibrium is the same as 
their notion of a perfect direct correlated equilibrium distribution.15 

 
Definition 13 A strongly proper correlated equilibrium is a symmetric ( )S Sz ÎD ´  
such that there is an 1( )x h D-Î  such that ( , )x x  is a proper equilibrium in the 
game zG% . 
 
Proposition 11 If ( )S Sz ÎD ´  is a strongly proper correlated equilibrium, then it is a 
proper correlated equilibrium. 

 
Proof: It suffices to show the following: 
Claim: Let 0e >  and , ( )x y TÎD

o
. Suppose that for all , Td d¢ ¢¢Î : 

 
( , ) ( , ) ( ) ( )U y U y x xz zd d d e d¢ ¢¢ ¢ ¢¢< Þ £ .  (68) 

 
Then, for every , ,s s s S¢ ¢¢Î , 

 
( , ( )| ) ( , ( )| ) ( ( ))( | ) ( ( ))( | )U s h y s U s h y s h x s s h x s sz z e¢ ¢¢ ¢ ¢¢< Þ £ .  (69) 

 
To prove the Claim, consider any , ,s s s S¢ ¢¢Î . Define sT-  as the set of functions 

: \ { }s S s Sd- ® . For every sd- , define ( , )ss d-¢  as the element in T  that agrees 
with sd-  over \ { }S s  and assigns s¢  at s . The elements ( , )ss d-¢¢  are defined 
similarly. Then, based on (51), for every s sTd- -Î , we have the following: 

 
(( , ), ) (( , ), ) ( , ( )| ) ( , ( )| )s sU s y U s y U s h y s U s h y sz z z zd d- -¢ ¢¢ ¢ ¢¢- = - .  (70) 

____________________ 

Q Q´
o o

. Then, Dd Î  and 1 2( , ) ( , )n nd d d d® . Moreover, for all {1,2}jÎ , d  is a best reply to n
jd  

over Q . Thus, d  satisfies Condition (A′). 
15 Dhillon and Mertens’s definition of a perfect correlated equilibrium is not restricted only to direct 

correlation mechanisms. Thus, their general notion differs from ours. 
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Now, we suppose that ( , ( )| ) ( , ( )| )U s h y s U s h y sz z¢ ¢¢< . Then, we have (( ,U sz ¢
), ) (( , ), )s sy U s yzd d- -¢¢< . Based on (68), we have 

 
(( , )) (( , ))s sx s x sd e d- -¢ ¢¢£   for all s sTd- -Î .  (71) 

 
Then, based on the definition (62) of h , we have 
 

( ( ))( | ) (( , )) (( , )) ( ( ))( | )
s s s s

s s
T T

h x s s x s x s h x s s
d d

d e d e
- - - -

- -
Î Î

¢ ¢ ¢¢ ¢¢= £ =å å .  (72) 

 
Thus, (69) holds. This proves the Claim. 

Then, Proposition 11 follows.16  Q.E.D. 
 
For the Nash equilibrium, if ( )x SÎD  is an ESS, then ( , )x x  is a proper 

equilibrium. (Cf. Weibull (1995), p. 42, Proposition 2.4.) The following result 
shows that the same is true for an ESC and a strongly proper correlated equilibrium. 

 
Proposition 12 If z  is an ESC, then it is a strongly proper correlated equilibrium. 

 
Proof: We apply Lemma 6 as given in the Appendix. Although it is stated in terms 
of the game G , it can be applied to any two-player symmetric finite normal form 
game, including zG% . 

For the game zG% , we consider the set 1( ) ( )h D T- ÎD . We prove that 1( )h D-  
satisfies conditions (i) and (ii), as given Lemma 6. 

As D  is nonempty, closed, and convex, 1( )h D-  is also nonempty, closed, and 
convex. As z  is an ESC, 1( )h D-  is contained in the set of symmetric Nash 
equilibrium strategies in zG% . Thus, 1( )h D-  satisfies condition (i). 

____________________ 
16 To establish Proposition 11 from the Claim, the details are as follows. Let symmetric z  be a 

strongly properly correlated equilibrium. Then, there exists an 1( )x h D-Î  such that ( , )x x  is a 

proper equilibrium in zG% . That is, there exists a sequence (0,1)ne Î  and a sequence 1 2( , )n nx x Î
( ) ( )T TD ´D
o o

 such that 0ne ® , 1 2( , ) ( , )n nx x x x® , and for every n  and every , {1,2}i jÎ  with 

i j¹ , 
 

( , ) ( , ) ( ) ( )n n n n n
j j i iU x U x x xz zd d d e d¢ ¢¢ ¢ ¢¢< Þ £   , Td d¢ ¢¢" Î .                        ( * ) 

 

Now, we define ( )h x Dd = Î , and define the sequence 1 2 1 2( , ) ( ( ), ( ))n n n nh x h x Q Qd d = Î ´
o o

. Then, 

1 2( , ) ( , )n nd d d d® . Based on ( * ) and the Claim, for every , {1,2}i jÎ  with i j¹ , and every 

, ,s s s S¢ ¢¢Î , we have: 
 

( , | ) ( , | ) ( | ) ( | )n n n n n
j j i iU s s U s s s s s sz zd d d e d¢ ¢¢ ¢ ¢¢< Þ £ . 

 

That is, (54) holds. Thus, ( , )d d  satisfies Condition (C′). Hence, z  is a proper correlated 
equilibrium. 
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Claim: There is an 0e >  such that for all (0, )e eÎ , all 1( )x h D-Î  and all 
( )y TÎD : 

 
Supp( )y 1((1 ) ) (1 ) ( )B x y x y h De e e e -Í - + Þ - + Î , (73) 

 
where Supp ( )y = { : ( ) 0}T yd dÎ > , and ( ) { : ( , ) max TB z T U z Uz z

dd d ¢Î= Î =
( , )}zd ¢  for all ( )z TÎD . 

To prove the Claim, based on Lemma 3a, we can choose any uniform invasion 
barrier 0e > . Consider any (0, )e eÎ , and any 1( )x h D-Î  and ( )y TÎD . We 
suppose that Supp( y ) ((1 ) )B x ye eÍ - + . Then, ( )( ,(1 ) ) maxw TU y x yz e e ÎD- + =

( ,(1 ) )U w x yz e e- + . Hence, ( ( ),(1 ) ( ) ( )) max ( ,(1 )QU h y h x h y U hz z
de e d eÎ- + = -

( ) ( ))x h ye+ . As 1( )x h D-Î , we have ( ( ),(1 ) ( )) max ( ,id
QU h y h y Uz z

de d e dÎ- + =
(1 ) ( ))id h ye d e- + . As e  is a uniform invasion barrier and e e< , we have 

( )h y DÎ , thus 1( )y h D-Î . As 1( )h D-  is convex, 1(1 ) ( )x y h De e -- + Î . This 
establishes the Claim. Thus, 1( )h D-  also satisfies condition (ii). 

Based on Lemma 6, there exists an 1( )x h D-Î  such that ( , )x x  is a proper 
equilibrium in zG% . That is, z  is a strongly proper correlated equilibrium. Q.E.D. 

 
Based on Propositions 11 and 12 if z  is an ESC, then it is a proper correlated 

equilibrium. Hence, it is also a perfect correlated equilibrium based on Proposition 
9. However a proper or perfect correlated equilibrium need not be an ESC. In 
Example 5, the completely mixed Nash equilibrium ( , )x x  is a proper equilibrium, 
where (1 / 3) (1 / 3) (1 / 3)x X Y Z= + + . Hence, x xz = ´  is a proper correlated 
equilibrium. However it is not an ESC. 

Whether the notion of strong properness is strictly stronger than that of 
properness in correlated equilibria remains an open question. 

 
 

IV. Concluding Remarks 
 
The conventional ESS approach focuses only on the Nash equilibrium, wherein 

nature provides private and independent signals to each player. Although the ESS 
yields a good selection of Nash equilibria, it is restrictive in the sense that in many 
cases people observe public and correlated signals. To deal with these cases, the 
concept of the correlated equilibrium is a natural extension of the Nash equilibrium. 

In this paper, we provided an evolutionary approach to the correlated 
equilibrium as a natural selection criterion. Our concept of the ESC captures 
evolutionary stability for both direct and indirect mechanisms that generate a 
correlated equilibrium. We have filled the existing gap between the ESS and 
correlated equilibria and demonstrated that our new concept of the ESC is a 
generalization of the ESS. We also suggested other refinements to the ESC that 
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have corresponding analogues in the refinements of Nash equilibria. For this 
purpose, we examined a perfect correlated equilibrium and a proper correlated 
equilibrium. 

 
 

V. Appendix 
 

5.1. A Linear Mapping from ( )TD  onto Q  
 
In section 3, we use the linear function : ( )h T QD ®  defined by (62). We also 

use the properties of h  given in the following lemma. 
 

Lemma 5 For the linear : ( )h T QD ®  defined by (62), the following is true: 

(a) ( ( ))h T QD = , 
(b) ( ( ))h T QD =

o o
. 

 
Proof: Consider any Qd Î . For each ˆ Td Î , we define 
 

ˆ
ˆ( ( )| )s S s sdl d dÎ= P .   (74) 

 
Clearly, ˆ 0dl ³ . It can also be proved that 

 
a) ˆ

ˆ
1

T
d

d

l
Î

=å , 

b) ˆ
ˆ ˆ ˆ{ : ( ) }

( | )
T s s

s s d
d d d

d l
¢Î Î =

¢ = å   for all ,s s S¢Î . (75) 

 
Thus, 

 
( )h xd = ,  where ˆ

ˆ

ˆ ( )
T

x Td
d

l d
Î

= ÎDå . (76) 

 
Hence, ( ( ))h T QD = . This proves Part (a) of the lemma. 

For Part (b), based on definition (62), it is clear that ( ( ))h T QD Í
o o

. Conversely, 

consider any ˆ Qd Î
o

. Based on (74), it is clear that ˆ 0dl >  for all ˆ Td Î . Then, 

based on (76) we have ( )h xd = , where ˆ ˆ
ˆ ( )

T
x Td dl d

Î
= å ÎD

o
. Thus, (Q hÍ D

o o

( ))T . Hence, Part (b) of the lemma follows.  Q.E.D. 

 
As noted in (76), the continuous function : ( )g Q T®D  defined by 
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ˆ
ˆ

ˆ( )
T

g d
d

d l d
Î

=å   (77) 

 
satisfies 

 
( ( ))h g d d=   for all Qd Î .  (78) 

 
Moreover, based on (77), we also have ( ) ( )g Q TÍ D

o o
. 

 
5.2. Proof of Lemma 3 

 
(Part (a)) We choose the linear function h  mapping ( )TD  onto Q  as given in 
(62). 

For the given ESC z , we define ( )Z TÍ D  as the union of all of the boundary 
faces of ( )TD  that do not contain any element of the closed convex set 1( )h D- , 
where { : }idD Q zd d d¢ ¢= Î ; . Then, for all x ZÎ , there is an 0e >  such that 

 
( , ( ) (1 ) ) ( ( ), ( ) (1 ) )id id idU h x U h x h xz zd e e d e e d+ - > + -    

for all (0, )e eÎ . (79) 
 

As Z  is compact, it follows that we can take that invasion barrier e  as uniform 
overall x ZÎ .17 That is, we can fix an 0e >  such that 
 

(79) holds for all x ZÎ .  (80) 
 
Now, we show that this uniform barrier e  also applies to those ( ) \x TÎD
1( )h D- . To prove this, it suffices to prove that 
 

(79) holds for all 1( ) \ ( ( ) )x T h D Z-ÎD È .  (81) 

____________________ 
17 This can be proved by an argument similar to that used by Weibull (1995), p. 44, proof of 

Proposition 2.5, paragraph 2, as follows. First, for every ( )h Zd Î , and every e Î¡ , we define 
 

( , )f A Jd de d e= + , 
 

where ( , )id idA Uz
d d d d= -  and ( , )id idJ Uz

d d d d d= - - . By (22a), 0Ad ³ . By (22b), if 
0Ad = , then 0Jd > . Then, we define a function : ( ) (0,1]b h Z ®  by 

 

( ) 1b d =    for 0Jd ³ , 

min ,1
A

J
d

d

ì üï ï= -í ý
ï ïî þ

  for 0Jd < . 

 

It can be verified that ( , ) 0f e d >  for all ( )h Zd Î  and all (0, ( ))be dÎ . Moreover, it is easy to 
prove that b  is continuous. As ( )h Z  is compact, ( )min ( ) 0h Z bde dÎ= > . This e  satisfies (80). 
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To prove (81), we require 
Claim 1: Let T T¢ Í . Then, for all 1( ) \ ( ( ) )x T h D Z-¢ÎD È , 
 

there exists a (0,1)lÎ , an 1 ( )x T Z¢ÎD Ç , 

and an 2 1( ) ( )x T h D-¢ÎD Ç  such that 1 2(1 )x x xl l= + - . (82) 

 
Proof of Claim 1 is given below. 
Now, consider any 1( ) \ ( ( ) )x T h D Z-ÎD È . Based on Claim 1 (with T T¢ = ), 

we can choose a (0,1)lÎ , an 1x ZÎ , and an 2 1( )x h D-Î  such that 1x xl= +
2(1 )xl- . We consider any (0, )e eÎ . Based on (80), we have 

 
1 1 1( , ( ) (1 ) ) ( ( ), ( ) (1 ) )id id idU h x U h x h xz zd e e d e e d+ - > + - . (83) 

 
As 2( )h x DÎ , we have 

 
1 2 1( , ( ) (1 ) ) ( ( ), ( ) (1 ) )id id idU h x U h x h xz zd e e d e e d+ - = + - .  (84) 

 
Therefore, 

 
1( , ( ) (1 ) )id idU h xz d e e d+ -   

1 2 1( ( ) (1 ) ( ), ( ) (1 ) )idU h x h x h xz l l e e d> + - + -   
1( ( ), ( ) (1 ) )idU h x h xz e e d= + - .  (85) 

 
Furthemore, 

 
2( , ( ) (1 ) )id idU h xz d e e d+ -   

   ( , )id idUz d d=   (as 2( )h x DÎ ) 

   ( ( ), )idU h xz d³   (by (22a)) 
2( ( ), ( ) (1 ) )idU h x h xz e e d= + -   (as 2( )h x DÎ ).  (86) 

 
Then, based on (85) and (86), we have 

 
( , ( ) (1 ) ) ( ( ), ( ) (1 ) )id id idU h x U h x h xz zd e e d e e d+ - > + - .  (87) 

 
This establishes (81), which together with (80), implies that the uniform invasion 
barrier e  holds for all 1( ) \ ( )x T h D-ÎD , i.e., (79) holds for all ( ) \x TÎD

1( )h D- . As h  maps ( )TD  onto Q , it follows that e  is a uniform barrier for all 
Qd ¢Î  with idzd d¢ /; . This establishes Part (a) of Lemma 3. 
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(Part (b)) We prove Part (b) based on our proof of Part (a). 
We choose a uniform barrier 0e >  as given in Part (a) of the lemma. 

Claim 2: There exists a neighborhood N  of D  in Q  satisfying 

 
1 2 1 2{ (1 ) |( \ )&( )&( [0, ))}N Q D Ded e d d d e eÍ + - Î Î Î .  (88) 

 
Proof of Claim 2 is given below. 
We choose a neighborhood N  of D , as given in Claim 2. Then, id Dd Î
NÍ . 
Consider any Nd ¢Î  with idzd d¢ /; . We claim that 
 

( , ) ( , )idU Uz zd d d d¢ ¢ ¢> .  (89) 

 
First, there exists a 1 \Q Dd Î , 2 Dd Î , and (0, )e eÎ  such that 1 (1d ed¢ = + -

2)e d . As 1 idzd d/; , we have 
 

1 1 1( , (1 ) ) ( , (1 ) )id id idU Uz zd ed e d d ed e d+ - > + - .  (90) 

 
As 2 idzd d; , it follows that 

 
1 2 1( , (1 ) ) ( , (1 ) )id id idU Uz zd ed e d d ed e d+ - = + -   

1 1 2 1 1( , (1 ) ) ( , (1 ) )idU Uz zd ed e d d ed e d+ - = + - .  (91) 

 
Thus, 

 
1( , ) ( , )idU Uz zd d d d¢ ¢> .  (92) 

 
Again, as 2 idzd d; , we have 

 
2( , ) ( , )idU Uz zd d d d¢ ¢= .  (93) 

 
Then, based on (92) and (93), we have 

 
1 2( , ) ( (1 ) , )idU Uz zd d ed e d d¢ ¢> + - .  (94) 

 
That is, (89) holds. This establishes Part (b) of the Lemma 3.   Q.E.D. 

 
Proof of Claim 1. We prove Claim 1 by induction over #( )n T¢= . 
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Claim 1 is clearly true for all T T¢ Í  with #( ) 1T¢ = . 
Suppose Claim 1 is true for all T T¢¢ Í  with #( )T n¢¢ = . We consider any 

T T¢ Í  with #( ) 1T n¢ = + . We prove that Claim 1 is also true for T¢ . There are 
two cases: 

(Case 1) Suppose 1( ) ( ) 0T h D-¢D Ç = / . As 1( )id h Dd -Î , we have id Td Ï . As 
such, T T¢ Ì , and ( )T¢D  is a boundary face of ( )TD . Thus, ( )T Z¢D Í . Hence, 
Claim 1 holds for T¢ . 

(Case 2) Suppose 1( ) ( ) 0T h D-¢D Ç ¹ / . We consider any 1( ) \ ( ( )x T h D-¢ÎD È
)Z . There are two cases: 
(Case 2a) Suppose ( )x T¢ÏD

o
. Then, bdy( )x T¢Î , where bdy( ( )) ( ) \T T¢ ¢D = D

( ) ( )T TT T¢¢Ì¢ ¢¢D = È D
o

. So, ( )x T¢¢ÎD  for some T T¢¢ ¢Ì . Based on the induction 

hypothesis, Claim 1 is true for T¢¢ . As such, there exists a (0,1)lÎ , an 1x Î
( )T Z¢¢D Ç , and an 2 1( ) ( )x T h D-¢¢ÎD Ç  such that 1 2(1 )x x xl l= + - . As T¢¢ Í

T , x  satisfies (82). 

(Case 2b) Suppose ( )x T¢ÎD
o

. We choose any 1( ) ( )y T h D-¢ÎD Ç . Then, we 

can choose an (0,1)a Î  and a bdy( ( ))w T¢Î D  such that ((1 ) / )w x a a= + -
( )x y- . Thus, (1 )x w ya a= + - . As 1( )x h D-Ï , 1( )y h D-Î , and 1( )h D-  is 

convex, we have 1( )w h D-Ï . There are two additional cases. 
(Case 2b.i) Suppose w ZÎ . Then, x  satisfies (82) with l a= , 1x w=  and 

2x y= . 
(Case 2b.ii) Suppose w ZÏ . As w T¢¢Î  for some T T¢¢ ¢Ì  and based on the 

induction hypothesis, there exists a (0,1)b Î , a 1 ( )w T Z¢¢ÎD Ç , and a 2w Î
1( ) ( )T h D-¢¢D Ç  such that 1 2(1 )w w wb b= + - . Then, we have 1 (1x xl= + -

2)xl  , where (0,1)l ab= Î , 1 1 ( )x w T Z¢= ÎD Ç , and 2 2 (1 )x w yg g= + - Î
1( ) ( )T h D-¢D Ç , and (1 ) / (1 ) (0,1)g a b ab= - - Î . Hence, x  satisfies (82). 

Thus, we show that Claim 1 holds for T¢ . 
Hence, by induction, Claim 1 holds for all T T¢ Í .  Q.E.D. 
 

Proof of Claim 2. We provide a neighborhood N  of D  in Q  that satisfies (88). 

First, for every ( )x TÎD , we define 
 

1 2( ) min{ [0,1]: (1 )x x x xt l l l= Î = + -   

for some 1x ZÎ  and 2 1( )}x h D-Î . (95) 

 
As Z  and 1( )h D-  are compact, by Claim 1 (with T T¢ = ), ( )xt  is well-
defined for all ( )x TÎD . Clearly, ( ) 0xt =  for all 1( )x h D-Î . 

We claim that we can choose a real number 0a >  such that the set 
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{ ( ) :N x T y x a= ÎD - <%  for some 1( )}y h D-Î  (96) 

 
satisfies 

 
( )xt e<   for all x NÎ % .  (97) 

 
Suppose no such an a  exists. Then, there exists a sequence ( )nx TÎD , a 
sequence 1

nx ZÎ , a sequence 2 1( )nx h D-Î , a sequence [ ,1]nl eÎ , and a sequence 
1( )ny h D-Î  such that for all n : 

 
1 2(1 )n n n nx x xl l= + - , 

1 /n nx y n- £ .  (98) 

 
By taking convergent subsequences if necessary, we can assume that ,n nx x y- ®

1 1 2 2, ,n nx x x x x® ® , and nl l®  for some 2 1, ( )x x h D-Î , 1x ZÎ , and [ ,1]l eÎ .  
Then, 

 
1 2(1 )x x xl l= + - .  (99) 

 
So, 

 
1 2(1 )d ld l d= + - ,  (100) 

 
where ( )h x Dd = Î , 1 1( )h x Dd = Ï , and 2 2( )h x Dd = Î . Hence, 

 
1 2( , ) ( , ) (1 ) ( , )id id idK K Kz z zd d l d d l d d= + - .  (101) 

 
That is, 

 
1( , ) (1 )idKzz l d d l z= + - .  (102) 

 
As 0l > , we have 1( , )idKzz d d= . Then, by Lemma 2 we have 1 Dd Î . This 
contradicts the fact that 1 Dd Ï . This establishes that we can choose a real number 

0a >  such that the set N%  defined by (96) satisfies (97). 
Based on (97), for all x NÎ % , we have 
 

1 2(1 )x x xl l= + -  for some [0, )l eÎ , 1x ZÎ  and 2 1( )x h D-Î . (103) 
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Now, we choose the continuous function : ( )g Q T®D  defined by (77). We 
define the set 

 
1( )N g N-= % .  (104) 

 
By (78), we have ( ( ))D h g D= . So, 1( ) ( )g D h D N-Í Í % . Hence, 1( )D g N-Í %

N= . As N%  is open in ( )TD  and g  is continuous, N  is a neighborhood of 
D  in Q . 

It remains to show that N  satisfies property (88). Consider any Nd Î . We 
choose the element ( )x g Nd= Î % , so ( )h xd = . By (103), 1 2(1 )x x xe e= + -  for 
some [0, )e eÎ , 1x ZÎ , and 2 1( )x h D-Î . Hence, 1 2(1 )d ed e d= + - , where 1d

1( )h x D= Ï , and 2 2( )h x Dd = Î . This establishes that N  satisfies (88).  Q.E.D. 
 

5.3. Proof of Equivalence between Conditions A′ and B′ 
 
We consider any Dd Î  and prove that d  satisfies Condition A′ if and only if 

it satisfies Condition B′. 
 

Condition B′ implies Condition A′. Let Condition B′ hold. We choose a sequence 

1 2( , )n n S SP Pe e Î ´  and a sequence 
1 2

1 2( , ) n n
n n Q Qe ed d Î ´  as given there. 

Then, 1 2( , )n n Q Qd d Î ´
o o

. 
We now prove that 1 2( , )n nd d  satisfies (48) for all large n . Consider any ,i jÎ

{1,2}  with i j¹ . As n
id d®  and 0n

ie ® , for all large n , and all s SÎ  with 
( , ) 0s S s sz¢Î ¢å > , we have 

 

, ,( | ) 0 ( | )n n
i i s ss s s sd d e ¢¢ ¢> Þ >   s S¢" Î ,  (105) 

 
where , , ,( )n n S

i i s s s s S Pe e ¢ ¢Î= Î . Based on (49) and (51), 
 

, ,( | ) ( , | ) max ( , | )n n n n
i i s s j j

s S
s s U s s U s sz zd e d d¢ ¢¢Î
¢ ¢ ¢¢> Þ =   s S¢" Î .  (106) 

 
Then, based on Lemma 4, (48) holds for all large n . 

By taking away the initial terms if necessary, we can assume that the sequence 

1 2( , )n nd d  satisfies (48) for all n . 
Thus, we establish Condition A′. 
 

Condition A′ implies Condition B′. Let Condition A′ hold. We choose a sequence 

1 2( , )n n Q Qd d Î ´
o o

 as given there. 
We choose any sequence (0,1)na Î  with 0na ® . For each {1,2}iÎ  and 
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each n , we define a perturbation , , ,( )n n S
i i s s s s S Pe e ¢ ¢Î= Î  by 

 

, , ( | )n n n
i s s i s se a d¢ ¢=   ,s s S¢" Î .  (107) 

 
Then, for all s SÎ , it is easy to verify that 

 

,
( ) {(1 ) ( ) : ( )}n

i s

n n n
iS x s x Se a a dD = - + ÎD ,  (108) 

 
where , , ,( )n n

i s i s s s S Pe e ¢ ¢Î= Î . Then, 
 

{(1 ) : }n
i

n n n
iQ Qe a d a d d¢ ¢= - + Î .   (109) 

 
For each n , and each {1,2}iÎ , we define the assignment: 
 

(1 )n n n n
i id a d a d= - +% .  (110) 

 
Then, based on (109) n

i

n
i Qed Î% . Furthermore, based on (110), we have 1 2( , )n nd d% %

( , )d d® . 
We claim that for each n and each , {1,2}i jÎ  with i j¹ : 
 

( , ) max ( , )
n
i

n n n
i j j

Q
U U

e

z z

d
d d d d

¢Î
¢=% % % .  (111) 

 
First, as d  is a best reply to n

jd  over Q , based on (109) and (110), n
id%  is a best 

reply to n
jd  over n

i
Qe , i.e., 

 

( , ) max ( , )
n
i

n n n
i j j

Q
U U

e

z z

d
d d d d

¢Î
¢=% .  (112) 

 
Furthermore, as 1 2( , ) ( , )n nd d d d® , based on (48), d  is a best reply to d  over Q . 
Then, again based on (109) and (110), n

id%  is a best reply to d  over n
i

Qe , i.e., 
 

( , ) max ( , )
n
i

n
i

Q
U U

e

z z

d
d d d d

¢Î
¢=% .  (113) 

 
As (1 )n n n n

j jd a d a d= - +% , based on (112) and (113), it follows that (111) holds. 
Thus, we obtain a sequence 1 2( , )n n S SP Pe e Î ´  and a sequence 1 2( , )n nd d Î% %

1 2
n nQ Qe e´  satisfying the property required in Condition B′.  Q.E.D. 
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5.4. Proof of Proposition 8 
 
We choose the functions yy da  and ydd a  as given in (55) and (56). We 

have 
 

a) y Qd Î
o

  ( )y S" ÎD
o

,  

b) ( )y Sd ÎD
o

  Qd" Î
o

. (114) 
 

Based on (57), we have 
 

a) ( , ) ( , )y yU V y yz d d =% %   , ( )y y S" ÎD% . 

b) ( , ) ( , )U V y yz
d dd d = %

%   , Qd d" Î% . (115) 

 
Furthermore based on definitions (55), (56), and (50), it follows that for all ,s s S¢Î  
we have 

 

a) ( , | ) ( ) ( , )yU s s x s V s yz d¢ ¢=   ( )y S" ÎD . 

b) ( , | ) ( ) ( , )U s s x s V s yz
dd¢ ¢=   Qd" Î . (116) 

 
Proof of Part (a) (“Only if” Part) Suppose ( , )x x  is a perfect equilibrium. As 

( , )x x  satisfies Condition A, we can choose a sequence 1 2( , ) ( ) ( )n nx x S SÎD ´ÎD
o o

 

that converges to ( , )x x  and satisfies (44). We choose the sequence 1 2( , )n nd d  

where n
i

n
i x

d d= . 
As 1 2( , )n nx x  converges to ( , )x x  and the mapping yy d®  is continuous, we 

have 1 2( , ) ( , )n n
x xd d d d® . It is easy to verify that ( , )id

xKz d d z= . That is, x Dd Î . 
We now show that ( , )x xd d  satisfies Condition A′. First, based on (114), we 

have 1 2( , )n n Q Qd d Î ´
o o

. Second, to see (48), we consider any (1,2}jÎ . For every n , 

and every Qd ¢Î , we have 
 

( , ) ( , ) ( , ) ( , )n n n n
x j j j jU V x x V y x Uz z

dd d d d¢ ¢= ³ = .  (117) 

 
Thus, (48) holds (with xd d= ). As ( , )x xd d  satisfies Condition A′, z  is a perfect 
correlated equilibrium. 
(“If” Part) Suppose that z  is a perfect correlated equilibrium. Then, we can 
choose a Dd Î  and a sequence 1 2( , )n nd d  as given in Condition A′. We choose 
the sequence 1 2( , )n nx x  where n

i

n
ix yd= . 

As 1 2( , ) ( , )n nd d d d®  and the mapping ydd ®  is continuous, we have 
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1 2( , ) ( , )n nx x y yd d® . Note that 
 

( , )x x K y yz
d dz d d´ = = = ´ .  (118) 

 
Therefore, ( , ) ( , )y y x xd d = . 

We now show that ( , )x x  satisfies Condition A. First, based on (114), we have 

1 2( , ) ( ) ( )n nx x S SÎD ´D
o o

. Second, to see (44), consider any {1,2}jÎ . For every n , 

and every ( )y S¢ÎD , we have 
 

( , ) ( , ) ( , ) ( , )n n n n
j j y j jV x x U U V y xz zd d d d¢ ¢= ³ = .  (119) 

 
Thus, (44) holds (with ix x= ). As ( , )x x  satisfies Condition A, it is a perfect 
equilibrium. 
 
Proof of Part (b) (“Only if” Part) Suppose ( , )x x  is a proper equilibrium. As 

( , )x x  satisfies Condition C, we can choose a sequence (0,1)ne Î  with 0ne ® , 

and choose a sequence 1 2( , ) ( ) ( )n nx x S SÎD ´D
o o

 with 1 2( , ) ( , )n nx x x x® , which 

satisfies (46). We choose the sequence 1 2( , )n nd d  where n
n
i x

d d= . As shown in the 

proof of “only if” in Part (a), we have: 1 2( , )n n Q Qd d Î ´
o o

, 1 2( , ) ( , )n n
x xd d d d® , and 

x Dd Î . 
We must prove (54). Consider any , {1,2}i jÎ  with i j¹ , any n  and any 

s SÎ . 
(Case 1) Suppose ( ) 0x s = . Then, ( , | ) 0 ( , | )n n

j jU s s U s sz zd d¢ ¢¢= =  for all ,s s¢ ¢¢
SÎ . Thus, (54) holds. 
(Case 2) Suppose ( ) 0x s > . Then, for all ,s s S¢ ¢¢Î : 
 

( , | ) ( , | ) ( , ) ( , )n n n n
j j j jU s s U s s V s x V s xz zd d¢ ¢¢ ¢ ¢¢< Þ <   (by (116a)) 

( ) ( )n n n
i ix s x se¢ ¢¢Þ £   (by (46)) 

( | ) ( | )n n n
i is s s sd e d¢ ¢¢Þ £   (by (55)). (120) 

 
Thus, we prove (54). As ( , )x xd d  satisfies Condition C′, z  is a proper 

correlated equilibrium. 
(“If” Part) Suppose that z  is a proper correlated equilibrium. Then, we can 

choose a Dd Î  such that ( , )d d  satisfies Condition C′. We choose a sequence 

(0,1)ne Î  with 0ne ® , and a sequence 1 2( , )n n Q Qd d Î ´
o o

 with 1 2( , )n nd d ®
( , )d d , and such that (54) holds. We choose the sequence 1 2( , )n nx x , where n

i

n
ix yd= . 

As shown in the proof of “if” in Part (a), we have 1 2( , ) ( ) ( )n nx x S SÎD ´D
o o

 and 
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1 2( , ) ( , )n nx x x x® . 
We must prove (46). Consider any , {1,2}i jÎ  with i j¹ , any n , and any 

,s s S¢Î . Suppose that ( , ) ( , )n n
j jV s x V s x¢ ¢¢< . Based on (116b), we have 

 

( , | ) ( , | )n n
j jU s s U s sz zd d¢ ¢¢<   for all s SÎ  with ( ) 0x s > .  (121) 

 
Based on (54), we have 
 

( | ) ( | )n n n
i is s s sd e d¢ ¢¢£   for all s SÎ  with ( ) 0x s > .  (122) 

 
Then, based on definition (56), 
 

( ) ( ) ( | ) ( ) ( | ) ( )n n n n n
i i i

s S s S

x s x s s s x s s s x sd e d e
Î Î

¢ ¢ ¢¢ ¢¢= £ =å å .  (123) 

 
Thus, (46) holds. As ( , )x x  satisfies Condition C, it is a proper equilibrium.  
Q.E.D. 

 
5.5. Statement and Proof of Lemma 6 

 
We used the following lemma in our proof of Proposition 12. It provides a 

sufficient condition for a set Q  to contain a symmetric proper equilibrium strategy. 
 

Lemma 6 Consider the two-player symmetric finite normal form game G . Let QÍ
( )SD  satisfy 

(i) Q  is nonempty, closed, and convex, and is contained in the set of symmetric Nash 
equilibrium strategies. 
(ii) There is an 0e >  such that for all (0, )e eÎ , all xÎQ  and all ( )y SÎD : 
 

Supp( ) ((1 ) ) (1 )y B x y x ye e e eÍ - + Þ - + ÎQ , (124) 
 
where Supp ( ) { : ( ) 0}y s S y s= Î >  and ( ) { : ( , )B z s S V s z= Î = max ( , )}s S V s z¢Î ¢  
for all ( )z SÎD . 

Then there exists an x ÎQ  such that ( , )x x  is a proper equilibrium. 
 
Lemma 6 is a “symmetric” variant of Theorem 5 of Swinkels (1992), which yields 

a proper equilibrium for an equilibrium evolutionarily stable (EES) set. We modify 
Swinkels’s result in several aspects: (a) Our set Q  is contained in the set of mixed 
strategies of single players, and Swinkels’s ESS set is contained in the set of mixed 
strategy profiles of all players. (b) Our set Q  is assumed to be convex, and 
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Swinkels’s ESS set is proved to be convex. (c) Our game is symmetric and we yield a 
symmetric proper equilibrium, and Swinkels’s game and proper equilibrium are not 
necessarily symmetric. Taking these features into account, we can easily modify 
Swinkels’s proof and establish Lemma 6. 

For the reader’s convenience, we provide a proof here. 
 

Proof of Lemma 6 
(Step 1 Two claims.) Define: 
 

{ ( ) : ( ) ( )z S B z B xL = ÎD Í  for some .}xÎQ   (125) 

 
Along the lines of Swinkels’s proofs,18 we can easily obtain the following variants of 
his Lemmas 9 and 10. 
Claim 1: Let zÎL , ( )y XÎD , xÎQ , and [0,1]a Î  be such that (1 )z xa= -

ya+ . Then, 
 

Supp( ) ( )y B z zÍ Þ ÎQ .  (126) 

 
Claim 2: There exists an 0e >   such that for all xÎQ  and all ( )z SÎD , 

 
x z ze- £ Þ ÎL .  (127) 

 
We choose such an e  as given in Claim 1 and define 
 

{ ( ) : max }
x

Y y S y x e
ÎQ

= ÎD - £ .  (128) 

 
Based on Claim 2, Y Í L . 

(Step 2: Obtaining a symmetric e -proper equilibrium.) For each (0,1)e Î , we 
define a correspondence : ( ) ( )P S Se D ®D  by ( ) { ( )|P x y S ye = ÎD  satisfies 
(129)}, 

 
a) #( )( ) / #( )Sy s Se³   s S" Î , 
b) ( , ) ( , ) ( ) ( )V s x V t x y t y se> Þ £   ,s t S" Î . (129) 

 
As Pe  is nonempty-valued, convex-valued, and upper hemicontinuous, it has a 
fixed point. For any sequence 0ne ® , any sequence nx  of fixed points nPe , and 

____________________ 
18 This requires the following variant of his Lemma 7: If , ( )x y SÎD  is such that ( ) ( ) 0B x B yÇ ¹ / , 

then ((1 ) ) ( ) ( )B x y B x B yl l- + = Ç  for all (0,1)lÎ . This result can be easily obtained along the 
lines of Swinkels’s proof. 
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any ( )x SÎD , if nx x® , then ( , )x x  is a proper equilibrium. 
(Step 3: Defining a retraction : ( )A S YD ® .) For each ( )y SÎD , define: 
 

( ) arg minxW y x yÎQ= -   

( ) { : (1 ) ( )L y z Y z W y ya a= Î = - +  for some [0,1]}a Î   

( )( ) arg minz L yA y z yÎ= - . (130) 

 
Using an argument similar to that given by Swinkels (1992), p. 327, paragraph 3, it 
follows that A  is single-valued, continuous, and maps ( )SD  onto Y , and that 

|YA  is an identity mapping, i.e., : ( )A S YD ®  is a retraction. 
(Step 4: Obtaining a proper equilibrium ( , )x x  with x ÎQ .) For each (0,1)e Î , 

we define a correspondence : ( ) ( )R S Se D ®D  by: 
 

( ) ( ( ))R x P A xe e= .  (131) 

 
Then, Re  has a fixed point for each (0,1)e Î . We can choose any sequence 

0ne ® , any sequence nx  of fixed points nRe , and any ( )x SÎD  such that 
nx x® . 
Now, we apply the argument used by Swinkels (1992), p. 327, paragraph 4, and 

prove that x ÎQ . First, for each n , we have ( ( ))n
n nx P A xeÎ . As such: 

 
( , ( )) ( , ( )) ( ) ( )n n n nV s A x V t A x x t x se> Þ £   ,s t S" Î .  (132) 

 
As 0ne ®  and nx x® , we have 

 
Supp( ) ( ( ))x B A xÍ .  (133) 

 
Moreover, ( ) (1 ) ( )A x W x xa a= - +  for some [0,1]a Î . Furthermore, ( )W x ÎQ  
and ( )A x YÎ Í L . Then, based on Claim 1 we have ( )A x ÎQ . Hence, 

( )A x x= . 
As x ÎQ  and nx x® , for all large n  we have nx YÎ . As such, ( )n nA x x= , 

and thus ( )n
n nx P xeÎ . Hence, ( , )x x  is a proper equilibrium.  Q.E.D. 
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