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THE TEMPORAL AGGREGATION EFFECT ON
THE PREDICTABILITY OF EXCHANGE RATE VOLATILITY *

KEUN YEONG LEE*

The temporal aggregation effect on autocorrelation functions for the squares of
exchange rate changes is theoretically and empirically analyzed. As the data fre-
quency decreases, autocorrelation functions converge to zero. The paper also com-
pares weighting schemes and out-of-sample performances of several competing mod-
els - GARCH(1, 1), homoskedastic, kernel, flat rolling regressions, and Foster and
Nelson’s weighted rolling regressions models. Temporal aggregation generally aggrav-
ates out-of-sample performances of GARCH( 1, 1) models and weighted rolling reg-
ressions, compared with other models. Low-frequency GARCH( 1, 1) models derived
JSrom high-frequency GARCH(1, 1) models are not worse than direct low-frequency
GARCH(1, 1) models.

I. INTRODUCTION

It is widely known that ARCH effects tend to weaken with less frequently
sampled data.’ In several previous papers, the Ljung-Box test showed that aut-
ocorrelations for the squares of exchange rate changes are highly significant for
daily data, but insignificant for monthly data(e.g., R. T. Baillie and T. Bollerslev,
1989). Kurtosis also decreases with low-frequency data(F. X. Diebold, 1986). F.
C. Drost and T. E. Nijman(1993) also suggested that low-frequency GARCH pa-
rameter estimates can be derived from high-frequency GARCH parameter estim-
ates. It is generally known that the GARCH(I, 1) model can forecast high vola-
tility periods better than other models(e.g., K. Y. Lee, 1991; K. D. West and D.
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11t has well recognized that financial variables, including exchange rates, exhibit volatility cluster-
ing. This empirical fact has stimulated explictly modelling time variation in second moments. The Aut-
oregressive Conditional Heteroskedasticity(ARCH) model of Engle(1982) is one of the most popular
methods. Most asset pricing theories relate first moments to second moments. Therefore, forecast of
volatility is also crucially important in asset pricing theories and dynamic hedging strategies. See Boller-
slev, Chou, and Kroner(1992) for a review of the theory and empirical evidence in this field.
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Cho, 1992). Therefore, it is interesting to study the temporal aggregation effect
on the predictability of exchange rate volatility, using several important models
for the conditional variance.

First, in the paper, the temporal aggregation effect on the autocorrelation fu-
nction and excess kurtosis is theoretically and empirically examined. Serial aut-
ocorrelation in squared residuals for high-frequency data is indicative of strong
conditional heteroskedasticity. But if squared exchange rate changes are not aut-
ocorrelated, as the frequency of data decreases, the homoskedastic model may be
better than a conditional heteroskedastic model under temporal aggregation. Sec-
ond, weighting schemes among GARCH(1, 1), kernel, flat rolling regressions,
and Foster and Nelson’s(1991) weighted rolling regressions models are compared.
Some models have similar weighting schemes. For example, the GARCH model
is a kind of one-sided weighted rolling regression. Third, the paper examines
out-of-sample accuracy of these models using daily, weekly, and monthly data.
The predictability of exchange rate volatility can be influenced by both temporal
aggregation and weighting schemes in models. Drost and Nijman(1993) argued
that a strong GARCH process aggregates to some weak GARCH process. It su-
ggests that it is also interesting to examine out-of-sample accuracy of the GAR-
CH model based on daily exchange rate volatility for every day of the past weeks
or months. Finally, it is explicitly tested whether forecast errors differ among
competing models.

The paper is organized as follows: In Section I, theoretical background is di-
scussed. Temporal aggregation of the autocorrelation function is considered. Sec-
tion I considers conditional variance models for out-of-sample comparisons and
estimation methods. Weighting schemes in GARCH, kernel, and rolling regres-
sions models are also compared. Section IV contains empirical results. Out-of-
sample performances of competing models are examined. The null hypothesis of
no difference in the accuracy of competing models is also explicitly tested. Sec-
tion V summarizes the major findings of this study.

I. THEORETICAL BACKGROUND

Baillie and Bollerslev(1989) pointed out that autocorrelations for the squares
of exchange rate changes are highly significant for daily data, but insignificant for
monthly data and that kurtosis also decreases with less frequently sampled data.
In this Section, a theoretical framework is provided to analyze the temporal ag-
gregation effect on the autocorrelation function and excess kurtosis. First, the au-
tocorrelation function for the aggregated squared series is derived by using aut-
ocorrelation functions for the original squared series and excess kurtosis for the
original series. For high-frequency financial data, large squared changes tend to
be followed by large squared changes. Serial autocorrelation in squared residuals
for high-frequency data is indicative of strong conditional heteroskedasticity. Au-
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tocorrelation functions for the aggregated squared series can be employed to che-
ck whether strong conditional heteroskedasticity also exists under temporal aggre-
gation. Second, excess kurtosis for the aggregated process was obtained. Excess
kurtosis is used to investigate whether the unconditional distribution of squared
exchange rate changes converges to normality under temporal aggregation. The
following notation is employed: ‘

7x(7.): the nth-order autocovariance for the aggregated(original) squared ser-
ies
Ys(%,): the variance for the aggregated(original) squared series
px(p.): the mth-order autocorrelation function for the aggregated(original)
squared series
EK,(EK.): excess kurtosis for the aggregated(original) series
Proposition 1

Given
(a) & = H: Gy, ’11 -~ i.i.d. F(O, 1),

where F(0, 1) specifies an arbitrary distribution with mean zero and unit vari-
ance;

(b) the k-period temporal aggregate defined as:
k
(1) yk,l = ;ek(l—l)-ﬁ'a t= 17 ttt, int[x]a

where int[x] denotes the integer part of x; v
then the #th-order autocovariance (¥ for the aggregated squared series only de-
pends on the autocovariances (¥4,.;) for the original squared series:

k-1
@ V2= ¥ k=i W k>1
Proof. See appendix.
Proposition 2
Given

(a) the conditions of Proposition 1;
(b) excess kurtosis defined as:
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() EK. = {E(e!) — 3[EE [EET;

then the variance (¥¥ for the aggregated squared series depends on the variance
(7,) and the autocovariances (;) for the original squared series, and excess kur-

tosis (EK,) for the original series:

. 26(E—1) =
@ 70—[k+ K. 12 ]yo+6;(k )Y, E>1

Proof. See appendix.
Proposition 3

Under the conditions of Proposition 2, the nth-order autocorrelation function
(o) for the aggregated squared series and excess kurtosis (EK,) for the aggreg-
ated series depend on the autocorrelation functions (p;) for the original squared
series and excess kurtosis (EK.) for the original series respectively:

() i (k—|i|)plm+i k>l
5) pr= e — ,
k+ 6%k —i)pi+—L—l%§£+12)
and
EK S (k- i)

6) EK,= k‘+6(EK¢+2) E>1

F—

Proof. See appendix.

In equations (5) and (6), o} and EK,—0, as k— 0. That is, conditional het-
eroskedasticity disappears and the convergence towards normality is to be expec-
ted, as % increases.

A simple Monte Carlo experiment was carried out in order to check the val-
idaty of the proposition 3.2 We generated 1000 samples of size 1000 by the sim-

»
2 The ARCH(p) process(e? = ao + Y_ a; &i-;+ ;) has the following Yule-Walker equations:

b
on = ;aipn—i,n= ], 2’ .o
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ple first order ARCH process as:
(7) & =N, (0, 1)(“0 +a 512—1 )”2

For each of the 1000 samples, po* and EK, are calculated from equations (5) and
(6) respectively for given a; and a;. Table 1 shows prand EK, as a function of %.
E“ and EK, imply the average of the first-order autocorrelation coefficient for the
k-period aggregated squared series and excess kurtosis for the k-period aggreg-
ated series for 1000 samples respectively. As £ increases, p_}" and EK, decrease.
Autocorrelation coefficients for the aggregated squared series can be employed to

check whether strong conditional heteroskedasticity also exists under temporal
aggregation.

1. MODELS FOR CONDITIONAL VARIANCE

The stylized facts about exchange rates are that they are linearly unpredict-
able and conditionally heteroskedastic. Some empirical papers examined the
out-of-sample forecasting performance to evaluate whether nonlinearities in
exchange rate models are important. Most failed to find important nonlinearities.
The results prompt researchers to take interest in the conditional variance, under
the assumption that the conditional mean follows a random walk. Consider the
following time series process: ‘

®) (nS —InS.)X100=056+ ¢
9 (&12-)~ RO, 0})

(10) O'f = W(L)t-l) = E(Etz IQI-I)

Then, using equations (5) and (6) with Yule Walker equations, we can derive oy and EK, for given a;
and EK,. For example, in the simple ARCH(1) case, the autocorrelation function for the squared ser-
ies is pn = af, 7>0. Plugging it into equations (5) and (6), we obtain p; and EK, for given a and
EK,. As shown in Table, o* and EK, converge to zero, as & increases.

k or EK,

1 0.300 3.000

a =03, EK, =3 . 5 0027 2.439
20 0.003 0.747

1 0.500 5.000

a =05 EK, =5 5 0,065 ' 6.145
: . 20 0.008 2.140
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[Table 1] Monte Carlo simulations

k o X,
1 0.416 5222
a =05a =0.5 5 0.039 3.969
20 0.001 1.301
: ' 0.482 15.139
a =03a =07 5 0.062 11.953
20 0.004 ‘ 4.231
1 _ 0.513 39.112
a =0.1a =09 5 0.082 31.265 -
20 0.006 11.498

Note: pi* and EK, imply the average of the first-order autocorrelation coefficient for the k-period ag-
gregated squared series and excess kurtosis for the k-period aggregated series for 1000 samples
respectively. :

where S is a spot exchange rate and the conditioning set O =[e, &) F
is an arbitrary distribution. The regression estimator m can be derived using a
variety of parametric and nonparametric methods. Several model specifications
stem from the empirical fact that large squared exchange rate changes tend to be
followed by large squared changes. The paper examines four important models
for the conditional variance - GARCH(1, 1), kernel, flat rolling regressions, and
weighted rolling regressions models.

3.1. GARCH

Several authors have argued that the GARCH(1, 1) model is useful for des-
cribing exchange rate volatility(e.g., R. F. Engle and T. Bollerslev, 1986; D. A.
Hsieh, 1989; Baillie and Bollerslev, 1989). In the paper, the following GARCH(1,
1) model is used to investigate exchange rate volatility:

(1 1) & = Oy N~ N(O, 1)
(12) o = a+t ag., + Bo'tz—l

where & is an error term with zero mean and conditional variance E(& | Q) = o°.
The conditional normal distribution is usually considered in the GARCH model.
In the GARCH model, the conditional variance is a linear function of lagged
conditional variances and past errors, leaving the unconditional variance const-
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ant. The GARCH model can be interpreted as an analogy to the ARMA model
for the conditional mean. By substituting a, + a&-, + 842, into 62, in equation
(12) repeatedly, one obtains:

1) G =1+3 Ae

where L,;=af™" and t=a(l — 87")/1-L)+L"'¢*. Maximum likelihood
estimates for the normal distribution in the GARCH(I, 1) model were obtained,
using the BFGS(Broyden, Fletcher, Goldfarb, and Shanno) algorithm.

Following Engle and Bollerslev(1986) in the GARCH(I, 1) model, the one-
step-ahead conditional variance forecast can be written as:

\ VA
(14) Giur=a,+ as: + B o2

Lee(1991) and West and Cho(1992) constructed weekly time series models bas-
ed on the past Wednesday data and compared their out-of-sample accuracy. But
in the same situation, it is also possble to build weekly time series models based
on daily exchange rate volatility. To analyze the temporal aggregation effect on a
GARCH process, Drost and Nijman(1993) defined three types of the GARCH
processes; strong GARCH, semi-strong GARCH, and weak GARCH. Rescaled
innovations are independent in strong GARCH and are uncorrelated in
semi-strong GARCH. In a weak GARCH process, only projections of the con-
ditional variance are considered. They argued that if the original squared series
follows the symmetric weak GARCH(1, 1) model, then the aggregated squared
series also follows the symmetric weak GARCH(1, 1) process.” That is, a strong
or semi- strong GARCH process aggregates to some weak GARCH process that
is not semi-strong GARCH. But their simulation results showed that the
quasi-maximum likelihood estimates (QMLE) are not different from the true par-
ameters, even if the low-frequency model follows a weak GARCH process.
High-frequency ARMA processes generally aggregate to low-frequency ARMA
processes(e.g., F. C. Palm and T. E. Nijman, 1984). In Drost and Nijman(1993)
low-frequency GARCH(I, 1) estimates are derived from high-frequency GAR-
CH(1, 1) estmates as:

%In Proposition 1, a strong GARCH assumption was invoked. But this assumption is strong. The
proof in Propositions 1~3 just needs:

E(eu-,,em-,,, Ext-n)—r Ekt-n)-s) =0
fp#qorr#s(p,q7,s=0,,k—1)

Drost and Nijman(1993) replaced this technical condition with the symmetry condition.
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15) at=kas[l = (@+ B}1l — (a+ B)]

16) o*=(at+p) 8"

(17) B* — ala, B, EK., k) (a+ B) — ba, B, k)
1+8*  ala, B, EK., Bl + (a+ B)*] = 2b(a, B, F)

| B*| <1 is the solution of the quadratic equation (17).
where

da, B, EK., k) = k(1 — By + 2kl — 1)1 —a — V(1 — 2a8 — £/
(EK.+ 2 —(a+ B 1+4k—1—kat+ p)
+(a+ B)lla — afla+ B — (a+ 8]

and
ba, B, k) = [a — aBla+ A1 — (a+ A1 — («+ B)]
Using equations (15), (16), and (17), the one-step-ahead conditional variance for-
ecast in the low-frequency GARCH(1, 1) model based on the high-frequency
GARCH(1, 1) model can be obtained as:

(18) 0%ur = as+ a*e¥+ B 5%

By substituting att+ate?, + /5’*0 , into equation(18) repeatedly, we can re-
write(18) as:

(19) 0'12+|/T = T *+ Z A. T+1 2*,2 ,

where Lr+| *,B*T / and {E\*= a’o(1 - ,é\*T)/(l - *) + ﬂ*T A*Z
3.2. Kernel methods

~ The nonparametric approach could also be employed to approximate the
conditional variance. Nonparametric estimation methods allow one to estimate
an unknown response function, without reference to a specific form. One of the
simplest nonparametric methods is kernel estimation. In this study we use the fol-
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lowing nonparametric kernel estimation model, which has previously been studied
by A. R. Pagan and A. Ullah(1988) and A. R. Pagan and G. W. Schwert(1990).*

T T
(20) &\?:ZI:W&???, ;Wa=l,

where T is the sample size. By letting z, be the » X 1 vector containing the ele-
ments in Q_, (z,=[&,.,, - , &-,]"), the weighting sequence W is defined by

Q1) W.= Kz — z;)/;TlKh(zk - z),

where K,(#%) is the kernel with the bandwidth /4. The following convolution ker-
nel is chosen in this study which was described by H. J. Bierens(1990).

(22) Kh(ul, ety ur) = ]];-I‘Kh(ujl

=1/6u;|*+u:—2|u | +4/3 ifl1<|u|<2
=0 , elsewhere,

where u;= (&,_;, — &,-;)/h. The bandwidth is set to ¢ &\,,. T0<c< o, 0<0<
1/6), where 3,, is the sample standard deviation of ,_;. The procedure has been

applied, using a grid search with 30 grid points for ¢ from 0.1 to 3 for the
out-of-sample analysis. w is given to 0.05.

In nonparametric kernel models, the one-step-ahead conditional variance fore-
cast can be expressed as:

T
(23) 312'+1/r = ; Wirn /gf’
T
where Wr = K, (241 — zi)/; K. (2, — 2r4) and 2zp, = /e\,.

3.3. Rolling regressions

There are several strategies for estimating time-varying variances and covarian-
ces - block constant covariance estimation methods(e. g., R. C. Merton, 1980; J.
M. Poterba and L. H. Summers, 1986; K. R. French, G. W. Schwert, and R. F.
Stambaugh, 1989), one-sided rolling regression methods(e. g., E. F. Fama and J.
D. Macbeth, 1973), and two-sided rolling regression methods(e. g., R. R. Officer,

4 When the bandwidth h goes to infinity, the predicted value of kernel models is the same as that
of the homoskedastic model, because it is equal to the mean of £?



112 THE KOREAN ECONOMIC REVIEW Volume 13, Number 1, Summer 1997.

1973; Merton, 1980). In one-sided flat rolling regressions, the conditional variance
estimate is: : .

Q) 3= 6,8

i=t—-n
where

25 6u=1ln ift—-n<i<t-1,
=0 elsewhere,

and where # is the window length.

D. P. Foster and D. B. Nelson(1991) suggested that flat weighting schemes
such as one-sided or two-sided rolling regressions or block-constant estimators
are inefficient. They altered the shape of weights from a block shape to an ex-
ponential decline:

6) &% =3’ *|n EXP[— —37 (t—Z)/n]

They showed that the asymptotic variance of the normalized measurement error
process derived using J% is lower than its asymptotic variance derived by using
0.9 They also derived asymptotically optimal window lengths as well as optimal
weights for two-sided weighted rolling regressions. :

In one-sided flat and weighted rolling regressions, the one-step-ahead con-
ditional variance forecast is:

A T A T
(27) 0'%+|/r =i=1;+l Oirs1 5? (OI‘ . Z O 5; ),

i=T-n+
where

oirn = 1/m (or 3" EXP[-3"(T —i+ D) fT—-n+1<i<T,
=0 elsewhere -

5 The normalized measurement error process is defined as:

O = H_m(uat - uQr)

where H i is a finite time interval, Q. is the conditional variance-covariance matrix of a random pro-
cess, and HQ, is the rolling regression estimator of ;€. Then, the normalized measurement error pro-
cess is asymptotically distributed N(0, ,Cr).
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4. Comparisons

Weighting schemes in equation (26) are different from those in equation (20).
Weights in one-sided weighted rolling regressions depend on time. When we pre-
dict the conditional variance at time 7' + 1, the shape of weights in equation (26)
is exponentially declining, as the distance from 7 + 1 increases. But in nonpar-
ametric kernel methods, the shape depends on z,, the » X 1 vector containing the
elements in 2_,(z,=&,., in this paper). If z; (=&,.,, i=1, -+, T) is nearer to 2.,
(=&,), we give €2 more weight.?

The GARCH model amounts to a one-sided weighted rolling regression(weig-
hts are non-negative). By considering ARCH(p) models for arbitrarily large but
finite order, we can use GARCH models to approximate Foster and Nelson’s
(1991) weighted rolling regressions. For p > 1, equation (13) can be rewritten as:

»
28) oi=a + ; a; /8\12—1'

where @,=a(1 — 8)/(1 —B) + B’0i., and a,=af”'. If @, in equation (28) is
ignored, the weighting scheme of the GARCH(1, 1) model is similar to that of
the weighted rolling regression. The shape of weights in equation (28)(a;=a8'™")
is declining, as that in equation (26), when time is far away from ¢. Table 2 com-
pares weighting schemes of GARCH(I, 1), kernel, flat rolling regressions, and
Foster and Nelson’s weighted rolling regressions models.

V. EMPIRICAL RESULTS
1. A Data and summary statistics

Daily spot exchange rates used in this study are from the EHRA macro data
tape from the Federal Reserve Board. The data are quoted by banks at noon
New York time. The sample period is from January 27, 1975 through January 9,
1991 and consists of 4001 observations for three spot exchange rates relative to
the U. S. dollar - the Japanese yen, the German mark, the British pound. We de-
lete all missing values(e.g., holidays) in daily exchange rate series. All are meas-
ured in US § per unit of foreign currency. Our interest centers on percentage
exchange rate changes of which we have 4000 daily observations. In order to in-
vestigate the temporal aggregation effect on the predictability of exchange rate

6 The shape of weights of flat rolling regressions is also similar to that of N-nearest neighbor met-
hods. Foster and Nelson’s(1991) weighted rolling regressions are similar to locally weighted regressions,
because the conditional variance estimate is a weighted, not a simple, average of 22 In flat and weig-
hted rolling regressions, the shape depends on time, but not on the elements in ;.
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[Table 2] Weighting schemes of models

model G weighting scheme comparison
> ,

GAR | % T L G:&rin | g = af™ time— —0>a, |

T T
KER ;Wﬂﬂ /6\12 Wi =Ki(zr — Zi)/;Kh(zk — Zr4) 2> 2Zr 2@ Win T
FLAT| 3 0rn& |Sru=1/n Sursn : constant

A L 1

FN | Y 0%l |54, =37 mEXP[-3" (T—i+1)u]| time— —00 = 8%

Note: 1. 2r41 = [€7, - yEropeil”
2. GAR, KER, FLAT, and F-N imply GARCH(l, 1), kernel, flat rolling regressions, and Fos-
ter and Nelson’s weighted rolling regressions models respectively.

volatility, the paper also studies weekly and monthly(every fourth week) series
derived from daily data. Every fourth week is used, instead of an end of month
series as monthly data. We have 800 weekly observations and 200 monthly ob-
servations. That is, consider a time series of daily log differences [D,]J¥ and form
the % period temporal aggregate:”

k
(29) Yk_l = ;Dk(t—l)ﬁ, t= l, eecy, lnt[x],

where int[x] denotes the integer part of x. The weekly time series corresponds to
the k=35 business day aggregate [, ;I and the monthly exchange rate series
corresponds to the =20 business day aggregate [M, J:=.

Baillie and Bollerslev(1989) showed that using the Ljung-Box test, autocorrel-
ations for the squared exchange rate changes are highly significant for daily se-

7Let s;=In S; and D;=s; — s;-; where S is a daily spot exchange rate.

t=0 1 2 3 4 5 6 7 8 9 10

So Sy Sz S3 S4 Ss Se S7 S Sy S0
Daily log S1—So $—S; $3—S; S4—S; Ss—Si | S¢—Ss $,—S¢ Sz—S7 S9—Sg Sw"Sy

difference D, D, D, D, Ds Dg D, Dg Dy Dy

Weekly log S5—$8p . S10—Ss
difference . Ws, 1 WS, 2
Monthly log $20—So

difference M. 20, 1
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[Table 3] Summary statistics on & and & (sample size = 4000/%)
Japan Germany UK.
k 1 5 20 1 5 20 1 5 20
SD 0.621 | 1.484 3305 | 0.641 | 1.457 | 3.304 | 0.645| 1.482 | 3.242
SK 0.450 | 0.569 | 0.504 | —0.053| 0.253 | 0.353 |—0.059] 0.042 | 0.273
EK 4290 | 2.483 | 0.752 | 4.531|1.003 | 0.687 | 4.531| 1.063 | 0.232
QX(10) | 306.4 | 31.67 8.037 | 2788 69.44 | 1241 | 416.7|76.12 | 31.11
[p-value] | [0.00] | [0.00] | [0.63] | [0.00] | [0.00] | [0.26] | [0.00]| [0.00] | [0.00]
R/S |2.22%| 158 | 1.39 | 2.13**| 1.73* | 1.50 | 2.01™| 140 | 1.15
o 0.171 | 0.117 | 0.047| 0.084 | 0.089 | 0.163| 0.110 | 0.067 |—0.031
02 0.084 | 0.022 |—0.020{ 0.105 | 0.108 | 0.037| 0.105 | 0.025 |—0.023
03 0.095 | 0.086 | 0.076| 0.076 | 0.205 | 0.007| 0.089 | 0.155 | 0.358
12 0.048 | 0.068 | 0.054| 0.100 | 0.075 |—0.112| 0.139 | 0.156 | 0.025
0 0.116 | 0.066 | 0.142| 0.110 | 0.027 | 0.060| 0.124 | 0.047 | 0.003
Note: 1. The weekly(monthly) series corresponds to the %= 5(20) business day aggregate.
2. SD: Standard deviation
3. SK(EK): Skewness(excess kurtosis)
4. 0*(10): Ljung-Box statistics for 10th-order correlation in =2
5. Let ¢(1’)=|§ (7= 4, where 0 < 7 <1, T is the sample size, [+ ] is the “integer

part of”, and ;z\ , is the sample variance of .. Then the mo- dified R/S statistic Q0 is: Qn=
[Max r) — Min APUTS)", where S is an estimate of the asymptotic variance. * and **
indicate significance at the 0.10 and 0.05 levels respectively (see Table 1a in Haubrich and Lo,
1989).
6. pi: the ith-order sample autocorrelation coefficient for e

ries, but insignificant for monthly series. They also pointed out that excess kur-
tosis tends to decrease, as the frequency of data decreases. Summary statistics on
& and & are reported to examine their arguments. As shown in Table 3, excess
kurtosis decreases, but skewness increases with less frequently sampled data. The
null hypothesis of conditional homoskedasticity is tested, using the Ljung-Box
test statistic Q*(p) for the pth-order serial correlation in &2. The null hypothesis
of uncorrelated squared changes is decisively rejected for daily data, but not for
monthly data. It implies that the homoskedastic model may be good for monthly
data, but not for daily data. Low-frequency autocorrelation coefficients are gen-
erally smaller than high-frequency autocorrelation coefficients. The modified re-
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scaled range statistic? (R/S in Table 3) is also considered, in order to test the co-
nstancy of the unconditional variance. The test statistic is mentioned in Table 3.
The null hypothesis of constancy of the unconditional variance is rejected for the
full daily sample. Stationary models such as nonparametric methods may be in-
appropriate for the full daily data. But we cannot assert that test statistics for the
whole sample size are closely related to the out-of-sample performance, because
half subsamples are used in a rolling manner in out-of-sample comparisons.

2. Out-of-sample RMSE

We examine the temporal aggregation effect on the one-step-ahead out-of-
sample predictive performance of exchange rate volatility, using GARCH(1, 1),
kernel, homoskedastic, one-sided flat, and weighted rolling regressions models.

As shown in Section 1, low-frequency GARCH(I, 1) estimates can be de-
rived from high-frequency GARCH(I, 1) estimates. Therefore, we also examine
the out-of-sample forecasting performance in weekly or monthly series using daily
GARCH(1, 1) parameter estimates as well as direct weekly or monthly GARCH
(1, 1) parameter estimates. Then, which estimates are better in out-of-sample ac-
curacy? In ARMA processes, H. Liitkepohl(1986) showed that if more infor-
mation is employed, better forecasts can be obtained, by using asymptotic theory
and small sample simulation results. But W. P. Cleveland and G. C. Tiao(1979)
suggested that for some time series a different model may be needed for different
seasons. T. G. Anderson and T. Bollerslev(1994) argued that the intradaily GAR-
CH models don’t conform closely to the theoretical aggregation results.

Table 4 shows GARCH(], 1) parameter estimates. In Table 4, weekly (or
monthly) GARCH(1, 1) estimates implied by daily GARCH(I, 1) estimates are
derived by plugging daily GARCH(I, 1) estimates into equations (15), (16), and
(17). In the case of Japan, a + 8 is greater than 1 in the full daily and weekly
data. But parameter estimates for the whole sample size don’t seem to be related
to the out-of-sample performance, because half subsamples are used in a rolling
manner in out-of-sample comparisons.

Data are divided into two equal subsamples. The first is used for a within-
sample fit, while the second is used for out-of-sample comparisons.? The root
meam square error (RMSE) is employed to measure out-of-sample accuracy.

#See J..G. Haubrich and A. W. Lo(1989), and M. Loretan and P. C. B. Phillips(1992) for the mo-
dified rescaled range statistic.

9 Observations 2001 through 4000 for daily data, observations 401 through 800 for weekly data,
and observations 101 through 200 for monthly data were reserved, in order to compare the
one-step-ahead out-of-sample performance in each exchange rate volatility series.

1 The RMSE is the statistical standard criterion which is commonly used. It is also useful and
interesting to compare conditional variance models with economic loss functions(e.g., R. F. Engle, T.
Hong, A. Kane, 1990; K. D. West, H. J. Edison, and D. Cho, 1993; J. A. Lopez, 1994).
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[Table 4 GARCH (1, 1) parameter estimates
(12) O'f = a + aef—l + Bdtz—l
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; a 2
Daily Japan 0.059 (0.008) 0.943 (0.007)
Germany 0.107 (0.010) 0.888 (0.009)
T =4000 UK. 0.087 (0.008) 0.903 (0.009)
Direct Japan 0.097 (0.015) 0.909 (0.014)
weekly Germany | 0.151 (0.039) 0.835 (0.042)
T =800 UK. 0.101 (0.028) 0.843 (0.037)
Weekly Japan 0.125 0.884
implied Germany 0.189 0.789
by daily UK. 0.141 0.807
Direct Japan 0.000 (0.002) 0.994 (0.019)
monthly Germany 0.071 (0.035) 0.864 (0.076)
T=200 UK. 0.091 (0.051) 0.755 (0.112)
Monthly Japan 0.256 0.781
implied Germany 0.301 0.616
by daily UK. 0.183 0.625

Note: 1. Standard errors are in parentheses.
2. Weekly (or monthly) implied by daily are estimated by plugging daily GARCH(1, 1) estim-
ates into equations (15), (16), and (17).

Foster and Nelson(1991) derived asymptotically optimal window lengths for
two-sided rolling regressions. But two-sided rolling regressions cannot be con-
sidered in the out-of-sample analysis, because leading terms are unknown. Hence,
only one-sided rolling regression is considered in the paper. Kernel methods also
have bandwidth selection problems.

For rolling regressions, the smallest of RMSE’s that was obtained from 20
window lengths(z =35 X 7, j=1, ---, 20) was reported in Tables 6, 7, and 8.
With kernel methods, the smallest of RMSE’s which was obtained from 30 ban-
dwidths was also reported.”’ In order to model the conditional variance of the
series &, conditioning variables z must be chosen. Experiments are conducted
with z,=&,., for out-of-sample comparisons among competing models.”? In the

U The Gaussian kernel was also used. But its out-of-sample performances were worse than those
of the convolution kernel employed here. There exists some controversy about choice of kernel(e.g., D.
W. K. Andrews, 1991; W. K. Newey and K. D. West, 1994).

12 We can also expand the information set z; to multiple lags. But these experiments do not gener-
ally outperform the one-lag case because of low dimensionality restriction(Pagan and Schwert, 1990).
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[Table 5] Bandwidth and window length specifications
Daily. - Weekly Monthly

Japan Germany| U K |Japan Germany| U K |Japan Germany| U K

¢ (KER) | 03 0.8 0.5 | 08 2.7 1.8 | 0.7 0.6 0.6
n (FLAT) | 55 20 35 | 35 30 25 | 100 95 85
n (F-N) 40 30 35 | 40 55 40 | 100 30 70

Note: 1. KER, FLAT, and F-N imply kernel, flat rolling regressions, and Foster- Nelson’s weighted
rolling regressions respectively.

real world, optimal bandwidths are not known and should be chosen ex ante by
cross validation. Table 5 reports bandwidth and window length specifications
employed in out-of-sample comparisons.

Flat rolling regressions in the literature generally use fewer than » =24 lags(e.
g., French, Schwert, and Stambaugh, 1987). R. G. Donaldson, M. Kamstra, and
H. Y. Kim(1993) suggested that restricting 7 < 40 don’t hamper the performance
of flat rolling regressions. In this paper, when # is specified between 20 lags and
55 lags in daily and weekly series, flat and weighted rolling regressions have the
smallest RMSE. But this is not the case with monthly series.

First, with daily exchange rate volatility series, GARCH(I, 1) models and
Foster and Nelson’s weighted rolling regressions are better than other models.
Large squared changes tend to be followed by large squared changes for
high-frequency exchange rate data. The homoskedastic model has the worst per-
formance in all cases.

Second, with weekly exchange rate volatility series, GARCH(, 1) models are
generally worse than other models in the cases of Japan and Germany. Flat roll-
ing regressions beat other models in the cases of Germany and the U. K. In Jap-
an case, the weekly GARCH(1, 1) model derived from the daily GARCH(1, 1)
model have the best performance.

Third, with monthly exchange rate volatility series, kernel models beat other
models in the cases of Japan and Germany. GARCH(1, 1) models are relatively
not good. Direct monthly GARCH(], 1) estimates have the worst out-of-sample
performance in the cases of Japan and U. K, while monthly GARCH(1, 1)
estimates based on weekly GARCH(1, 1) estimates have the best performance in
the case of U. K. '

GARCH(, 1) model have high persistence; which may account for why it
can explain high volatility periods better than homoskedastic, nonparametric ker-
nel, and flat rolling regressions models. Generally speaking, temporal aggregation
aggravates out-of-sample performances of GARCH(l, 1) models and Foster and
Nelson’s rolling regressions. Large squared changes don’t tend to be followed by
large squared changes in low-frequency exchange rate data. Tables 7 and 8 indi-
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[Table 6] Out-of-sample RMSE (daily)
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Japan Germany UK.
1. GARCH .879' 9517 1.089°
2. HO .892° 961° 1.125°
3. KER .888° 960* 1.115
4. FLAT .888* 953 1.092°
5. F-N .884 .948' 1.089'
H: [p-value] 3.43 [0.064] (12) 4.49 [0.034] (6) 3.74 [0.053] (13)
Ha [p-value] 4.6510.325] (7) 12.78 [0.012] (7) 14.08 [0.007] ( 7)

Note: 1. HO, KER, FLAT, and F-N imply homoskedastic, kernel, flat rolling regressions, and Foster
and Nelson’s weighted rolling regressions models respectively.
2. The number in upper-right comer of RMSE indicates the rank of the model.
3. Hs: the hypothesis of equal MSE’s for the best model and the worst model.
4. Hw the hypothesis of equal MSE’s across all five models. Hs and Hw rows give X7 statistics.

5. The number in parenthesis was computed by Newey and West(1994)’s automatic lag selection

method.

[Table 7] Out-of-sample RMSE (weekly)

Japan Germany UK.
1. GARCH 5.151°¢ 4.015¢ 4.202°
2. HO 5.063° 3.921° 4.270°
3. KER 5.053° 3.920° 4255
4. FLAT 5.103° - 3.896' 4.170'
5.F-N 5.095* 3.926* 4.209°
6. GARCH implied
by daily 5.051 3.969° 4.220°
H; [p-value] 5.94 [0.015] (1) | 0.96 [0.033] (2) 0.88 [0.347] (7)
Ha [p-value] 13.59 [0.018] (0) | 7.01 [0.220] (4) 1.30 [0.934] (3)

Note: 1. HO, KER, FLAT, and F-N imply homoskedastic, kernel, flat rolling regressions, and Foster
and Nelson’s weighted rolling regressions models respectively.
2. GARCH implied by daily is derived by plugging daily GARCH(1, 1) estimates into equa-
tions (15), (16), and (17).
3. The number in upper-right comer of RMSE indicates the rank of the model.
4. Hs the hypothesis of equal MSE’s for the best model and the worst model.
5. Hwm the hypothesis of equal MSEs across all six models. Hs and Hw rows give X ? statistics.

6. The number in parenthesis was computed by Newey and West(1994)’s automatic lag selection

method.
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[Table 8] Out-of-sample RMSE (monthly)

Japan Germany UK.

1. GARCH 20.957 18.44° 19.00
2. HO 20.37 18.49¢ 18.83°
3. KER 20.11 18.20' 18.71*
4. FLAT 20.37° 18.43 18.70°
5. F-N 20.59° , 18.52° 18.85¢
6. GARCH implied _

by daily 20.94° 19.14 18.70°
7. GARCH implied

by weekly 20.66° 18.74° 18.69'
H; [p-value] 1.22 [0.270] (1) 3.33 [0.068] (3) 2.72 [0.099] (3)
H. [p-value] n. a. 8.48 [0.205] (1) | 12.12[0.059] (1)

Note: 1. HO, KER, FLAT, and F-N imply homoskedastic, kernel, flat rolling regressions, and Foster

and Nelson’s weighted rolling regressions models respectively.

2. GARCH implied by daily (or weekly) is derived by plugging daily (or weekly) GARCH(, 1)
estimates into equations (15), (16), and (17).

3. The number in upper-right corner of RMSE indicates the rank of the model.

4. Hs: the hypothesis of equal MSE’s for the best model and the worst model.

5. Hw the hypothesis of equal MSE’s across all seven models. Hs and Hx rows give X’ statistics.

6. The number in parenthesis was computed by Newey and West(1994)’s automatic lag selection
method.

cate that homoskedastic, kernel, and flat rolling regressions models are relatively
better than GARCH(1, 1) models in low-frequency data. But kernel methods and
rolling regressions have window length specification problems. Low-frequency
GARCH(1, 1) models based on high-frequency GARCH(1, 1) models beat other
models for Japan case in weekly series and for U. K. case in monthly series re-
spectively.

3. Statistical tests

In this Section, using generalized method of moments(L. P. Hansen, 1982),
the null hypothesis of equal forecast accuracy of the following pairs of competing
models was formally tested:

H,: the hypothesis of equal MSE’s from the best model and the worst model.
H,: the hypothesis of equal MSE’s across all competing models.
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The null hypothesis that 7= c(m: MSE of model 7, ¢: constant) can be tested
by the following procedure:

CG0) w=m—c

Whel'e u; = (ult, “tty uqt)a
m o= (my, -+, my),

q implies the number of competing models. The orthogonality conditions state
that E(, ®2,) =0, where 2, is a constant (E(x,) =0). Then there are 1 parameter
and 1 X ¢ orthogonality conditions leaving ¢ — 1 overidentifying restrictions. Sin-
ce the true parameter is unknown, a GMM estimator can be estimated by defin-
ing the function g*(c) = Eu,). This function has a zero at ¢ = c*, since it is equal
to zero under the null hypothesis. The method of moments estimator of the func-
tion g*(c) for a sample is: ‘

G) &©@=T"3u,

where T is the sample size. The parameter ¢ can be estimated by minimizing the
following criterion function:

3D 50 = g Wrg:(0),

where W; is a symmetric weighting matrix of orthogonality conditions. The con-
sistent estimate of W is formed by:

63 W= RO + T R+ R G,

where

G) RO)=T"Y wu..

t=1+j

The two-step procedure is employed in the paper. F. X. Diebold and R. S. Mar-
iano(1991) argued that A-step-ahead forecast errors tend to be approximately
characterized by moving average processes of order (—1). But, in the paper, 7
was determined using the automatic lag selection method in Newey and West
(1994).

First, with daily series, the H; test of equal MSE’s from the best model and
the worst model is rejected at the 0.10 level in all cases. It implies that the GAR-
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CH(1, 1) model is significantly better than the homoskedastic model. It is also te-
sted whether MSE's are the same across all models. The H, test of equal MSE’s
for five competing models is rejected at the 0.05 level in the cases of Germany
and U. K.

Second, in weekly series comparisons, the weekly GARCH(I, 1) model de-
rived from the daily GARCH(1, 1) model is also considered. The H, test of equal
MSE’s for the best model and the worst model is rejected at the 0.05 level in the
cases of Japan and Germany. The H,, test of equal MSE’s across six competing
models is rejected at the 0.05 level in the case of Japan.

Third, in monthly series comparisons, the monthly GARCH(1, 1) model bas-
ed on the daily (or weekly) GARCH(1, 1) model is also considered. The H test
of equal MSE’s for best model and the worst model is rejected at the 0.10 level
in the cases of Germany and U. K. The H,, test of equal MSE’s for seven com-
peting models is rejected at the 0.10 level in the case of U. K. The null hypoth-
esis of equal MSE’s among competing models is rejected more frequently with
the daily series than with the monthly series.

V. CONCLUSIONS

The temporal aggregation effect on the predictability of exchange rate vola-
tility has been examined, using daily, weekly, and monthly data. First, temporal
aggregation of the autocorrelation function and excess kurtosis is considered. The
theoretical and empirical results show that autocorrelations for the squares of
exchange rate changes and excess kurtosis decrease with low-frequency data.

The paper further confirms the theoretical and empirical results, as mentioned
above, by investigating whether out-of-sample accuracy of a GARCH(l, 1) mod-
el is still better than that of the homoskedastic model under temporal aggre-
gation. This study also investigated out-of-sample accuracy of kernel methods,
flat rolling regressions and Foster and Nelson’s weighted regressions. Weighting
schemes of some models are related to each other. In summary, GARCH(1, 1)
models are good using daily series, while homoskedastic, kernel, and flat rolling
regressions models perform better using monthly series. Kernel models and roll-
ing regressions have window length selection problems. Temporal aggregation
generally aggravates out-of-sample performances of GARCH(1, 1) models and
Foster and Nelson’s weighted rolling regressions. Large squared changes don’t
tend to be followed by large squared changes in low-frequency exchange rate data.
Low-frequency GARCH(I, 1) models based on high-frequency GARCH(, 1) mod-
els are not bad, compared with direct low-frequency GARCH(1, 1) models.

The null hypothesis of no difference in the accuracy of competing models
is also explicitly tested. The null hypothesis of equal forecast accuracy is rej-
ected more frequently with the daily series than with the monthly series.
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APPENDICES

1. Proof of Proposition 1

®
AD %, = (; Ex-n+i )

k
(A2) yi:-n = (; ek(l—n—l)+i)2
V= cov Wi, Yern)

From assumption,

cov(ekl—p ekt—q, Ent-n)-r ek(i—n)—s) = O

fp#tqorr#sp,q,7,s=0,,k—1)

Then

k=1 k—1 k=1 k-1

(A3 7i= ZZcov(eu,,emn),)—;Zym,,

= 'ykn—(k—l) + 2ykn-(k—2) + - e (k - 1)ylm 1
+ kylm + (k - l)yimﬂ + e + ylm+(k—l)

Z (k= 121)Yimss.

2. Proof of Proposition 2

(Ad) Yi=var (yk l) = E(ykt [E(yfe.t)]2

k=2 k-1

(A5 E(yu)—ZE(eu,)+ 6E[Z Z (ektxekt;]

k=2 k-1

(A0 [BGL)F =Y (B F +2 L 3 [ Be) Feiny)

Plug (A5) and (A6) into (A4),

k=2 k-1

A7) v¥= Z var(ey-;) + 6 ;Z—: ”Z cov(&, i, & ;)
+ 4 Z Z [E(eh—) Elex-;)]

7=0 1—/

=k, +6 z (k=2 + 4ﬂk{—ll [EF
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= (& + 4B (5 )R 9, + 6 T - i

[E(&})I* /7, in (A7) can be expressed as excess kurtosis:

(A8)  Y/IE@E = {E(eh) — 3[E@E B + 2
= EK. + 2.

Plug (A8) into (A7),

W9 7i=[ k+-EE= 1y 16T k-

3. Proof of Proposition 3

From (A3) and (A9),

k-1

v* Z (k" |i|)7kn+i

(AIO) Pt = '}/:; = 2k17€_11 =1
0 [k+7%:%1%+6;%—0%

k=1
i;k (k - | z I)le+i

From (A5) and (A6),

B
(AID EK, = 1o 5F ~ 3

k=2 k-1
EK, ={ (REK.+ 15)[E(& )] + 6 x, 2 covleis, &)

k=2 k-1

T63 ) Eei) Ele))F[Ee)f -3

-k i [Ee,)!
Y (k—Do

- _EK =
= LK+ e(ex +2) T
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